Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abfall aus der Mühle verbessert Verschleißeigenschaften von Kunststoffen

01.03.2012
Die Professur Fördertechnik der TU Chemnitz hat gemeinsam mit regionalen Unternehmen ein Kunststoff-Compound entwickelt, das zu 60 Prozent aus dem nachwachsenden Rohstoff Haferspelzen besteht

Bevor ein Bäcker einen Brotlaib in den Ofen schiebt, streut er eine Hand voll Haferspelzen auf die Backfläche - das verhindert, dass der Teig kleben bleibt und anbrennt. "Andere Anwendungen für Haferspelzen gibt es derzeit allerdings nicht. Es ist ein Abfallprodukt, das nicht als Nahrungsmittel dienen und auch nicht an Tiere verfüttert werden kann", sagt Prof. Dr. Klaus Nendel, Inhaber der Professur Fördertechnik an der Technischen Universität Chemnitz.

Das Vorgehen des Bäckers brachte die Chemnitzer Fördertechniker jedoch auf eine Idee, denn es zeigt, dass Haferspelzen hitzebeständiger sind als viele andere nachwachsende Rohstoffe. Diese werden in Kunststoffe eingearbeitet, um sie stabiler zu machen. "Allerdings tritt bei der Verarbeitung häufig das Problem auf, dass die nachwachsenden Rohstoffe ab etwa 160 bis 180 Grad Celsius thermisch geschädigt werden", so Nendel. Haferspelzen überstehen hingegen bis zu 220 Grad Celsius - optimal für den Einsatz in der Kunststoffverarbeitung.

Die Spelzen, die die Blüten des Korns umgeben, werden beim Hafer bereits vor dem Quetschen der Körner in der Verarbeitung ausgesondert. Zusammen mit Kunststoffen werden daraus erst ein Compound und dann Bauteile. Für deren Herstellung arbeiteten die TU-Fördertechniker mit drei Unternehmen aus der Chemnitzer Region zusammen. Die C.F. Rolle GmbH Mühle aus Waldkirchen bereitete die Haferspelzen auf, trocknete und zerkleinerte den Rohstoff. Die CKT Kunststofftechnik GmbH aus Mittweida stellte aus Spelzen und Kunststoff das Compound her; die Kunststofftechnik Weißbach GmbH aus Gornau war für die Weiterverarbeitung zu Probekörpern zuständig. Diese wurden in den Labors der TU Chemnitz umfangreich getestet.

Untersucht haben die Wissenschaftler verschiedene Kunststoffarten, unterschiedliche Körnungen der Haferspelzen, die Mischungsverhältnisse und Kennwerte für Reibung und Verschleiß sowie die mechanischen Eigenschaften. Als optimal stellte sich eine Mischung des Kunststoffes Polyethylen (PE) mit 60 Prozent Haferspelzen heraus. Deutliche Vorteile des neuen Materials zeigten sich bei Reibung und Verschleiß. Dabei tritt nicht nur am Bauteil aus dem mit Haferspelzen versetzten Kunststoff weniger Verschleiß auf, sondern auch an den Reibpartnern aus Kunststoff oder Stahl. Nachteile zeigen sich beim derzeitigen Stand der Forschung noch bei den mechanischen Eigenschaften. Die Haferspelzen stellen keine Faserverstärkung im klassischen Sinne dar. Auch bei starken Schwankungen der Luftfeuchtigkeit ist der Werkstoff nicht geeignet, da die Haferspelzen aufquellen können. "Werden die ermittelten Grenzen beachtet, lässt sich jedoch aus den Vorteilen ein deutlicher technischer Mehrwert generieren", sagt Nendel.

Da Haferspelzen als Rohstoff weniger kosten als Kunststoff, werden auch die fertigen Bauteile preiswerter sein. "Eine Kostenersparnis von rund 30 Prozent ist realistisch", so Nendel. Zudem ergeben sich Vorteile für die Umwelt: Zum einen wird Kunststoff und damit Erdöl eingespart. Zum anderen sinkt mit der Reibung auch der Energieverbrauch im Betrieb von technischen Systemen. Gleichzeitig müssen die Bauteile durch den verminderten Verschleiß seltener erneuert werden. Einsatzmöglichkeiten für das Compound bieten sich deshalb vor allem dort, wo tribologische Problemstellungen ein Einsparungspotenzial für Energie darstellen, also auch in der Fördertechnik. "Die aktuell in der Praxis verwendeten Kunststoffgleitleisten weisen ein großes Verbesserungspotenzial hinsichtlich Reibung und Verschleiß auf", so Nendel. Derzeit arbeiten die Wissenschaftler daran, statt kleiner Probekörper große Halbzeuge herzustellen. Dafür müssen sie die Fertigung vom Spritzguss auf Extrusion umstellen. Klappt dieser Sprung, kann auch eine effiziente Serienfertigung bzw. eine Markteinführung des neuartigen Werkstoffes gelingen. "Erste Unternehmen haben bereits Interesse signalisiert", sagt Nendel.

Das Projekt wurde vom Bundesministerium für Wirtschaft und Technologie mit rund 400.000 Euro für zwei Jahre gefördert und von der Arbeitsgemeinschaft industrieller Forschungseinrichtungen "Otto von Guericke" e.V. betreut.

Weitere Informationen gibt es im Internet unter http://www.tu-chemnitz.de/mb/FoerdTech/aew/aew_gleitleisten.php. Mehr Informationen zur Anwendung von erneuerbaren Werkstoffen finden sich unter http://www.tu-chemnitz.de/mb/FoerdTech/aew/aew_start.php.

Kontakt: Kay Cramer, Telefon 0371 531-37156, E-Mail kay.cramer@mb.tu-chemnitz.de; Prof. Dr. Klaus Nendel, Telefon 0371 531-32323, E-Mail klaus.nendel@mb.tu-chemnitz.de; Sven Eichhorn Telefon 0371 531-35851, E-Mail sven.eichhorn@mb.tu-chemnitz.de

Katharina Thehos | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de
http://www.tu-chemnitz.de/mb/FoerdTech/aew/aew_start.php
http://www.tu-chemnitz.de/mb/FoerdTech/aew/aew_gleitleisten.php

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie