Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Skalierbarer Elektroantrieb für Busse, Trucks und Co.

02.02.2015

Elektroautos liegen im Trend. Doch noch sind die Antriebsachsen für die Stromer zu schwer, zu teuer und zu groß. Fraunhofer-Forscher konzipierten daher gemeinsam mit Partnern ein optimiertes Achsmodul für Nutzfahrzeuge: Es ist leistungsstark, leicht, kompakt und günstig. Die Besonderheit: Der Motor ist direkt in die Achse integriert.

Elektromotoren gehört die Zukunft – auch bei Nutzfahrzeugen. Bislang jedoch bleiben viele Entwicklungen im Prototypen-Status hängen oder sind enorm teuer: Meist muss für ein Elektrofahrzeug das Doppelte bis Dreifache auf den Tisch gelegt werden.


In Elektro-Nutzfahrzeugen der Zukunft ist der Antrieb in die Achse integriert. Die Module aus Antrieb und Achse sind auf verschiedene Fahrzeugtypen skalierbar.

© Fraunhofer IWU / Hochschule für Wirtschaft und Technik, Aalen

Der Grund: Es hapert an den entsprechenden Technologien zur Serienfertigung. Hier setzt das Projekt ESKAM an, kurz für »Elektrisches, skalierbares Achsmodul«. Es wird vom Bundesministerium für Bildung und Forschung BMBF gefördert. Insgesamt elf Partner, darunter das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU in Chemnitz, entwickeln darin ein Achsmodul für Nutzfahrzeuge. Es besteht aus Motor, Getriebe und Leistungselektronik.

Alles ist kompakt in einem gemeinsamen Gehäuse untergebracht. Über eine Rahmenkonstruktion, die die Wissenschaftler ebenfalls entwickelt haben, lässt sich dieses Gehäuse in das jeweilige Fahrzeug einbauen.

Die Vorteile des Achsmoduls sind zahlreich: Es verfügt über eine hohe Leistungsdichte und ein sehr hohes Drehmoment. Für den Fahrer heißt das: Er kann sehr schnell beschleunigen. Während die Drehzahl bei den meisten Elektromotoren bei etwa 10.000 bis 15.000 Umdrehungen pro Minute liegt, schafft der ESKAM-Motor 20.000.

»Als wir vor drei Jahren mit dem Projekt begannen, waren wir die einzigen, die eine so hohe Drehzahl erreichen konnten«, erinnert sich Dr. Hans Bräunlich, Projektleiter am IWU. »Mittlerweile wagen sich auch andere an ähnlich hohe Drehzahlen. Da wir aber schon frühzeitig Erfahrungswerte sammeln konnten, haben wir hier einen entwicklungstechnischen Vorsprung, den wir weiter ausbauen wollen.«

Günstige Fertigung durch Serientechnologien

Der Hauptvorteil liegt jedoch in einem anderen Punkt: Die Forscher und Entwickler konstruierten nicht nur das Achsmodul, sondern entwickelten die nötigen Serientechnologien gleich mit. Federführend dabei war das IWU, das auch die technische Leitung des Gesamtprojekts innehat.

»Aufgrund des innovativen Konzeptes lassen sich die Module flexibel herstellen – kleine Stückzahlen ebenso wie eine Großserie«, sagt Bräunlich. Die Serienfertigung bringt wirtschaftliche Vorteile mit sich – die Produktionskosten sinken laut Bräunlich um bis zu 20 Prozent.

Ein Beispiel: Das Getriebe, das einen Teil des Achsmoduls bildet, besteht aus Wellen und Zahnrädern. Üblicherweise werden die Wellen aus teuren Rohren oder durch Tieflochbohren hergestellt. Das überschüssige Material geht dabei verloren. Die Forscher am IWU setzen dagegen auf neue, kurze Prozessketten und materialeffizientere Verfahren. So etwa auf das Bohrungsdrücken, eine IWU-Entwicklung. Zwar bearbeitet man dabei auch einen Materialblock, allerdings ist der Rohling kürzer als die spätere Welle.

»Man muss sich den Prozess vorstellen wie das Töpfern: Der Werkstoff wird während der Umformung verdrängt – und nach außen und in Längsrichtung herausgedrückt. So können wir fast das gesamte Material nutzen. Das reduziert die Materialkosten um etwa 30 Prozent und macht die Bauteile insgesamt leichter«, erläutert Bräunlich.

Für dieses Verfahren gab es bislang nur Ansätze, die Wissenschaftler haben es nun zur Serienreife gebracht. Auch die Zahnräder fräsen die Wissenschaftler nicht mehr aus dem Material heraus, sondern fertigen sie in einem ebenfalls am IWU entwickelten Umformverfahren, dem Verzahnungswalzen. Bei dieser Methode fallen keine Metallspäne mehr an, der Materialverlust ist gleich null.

Flexibel einsetzbar – vom Kleinwagen bis zum Bus

Die Flexibilität des Achsmoduls beschränkt sich nicht nur auf die Seriengröße, sondern schließt auch die Geometrie mit ein. »Das Modul ist skalierbar, wir können es sowohl bei einem kleinen Transporter oder Kommunalfahrzeug einsetzen als auch bei einem Bus oder Truck«, sagt Bräunlich. Bei einem Radnabenmotor wäre das nicht möglich.

Zwar bietet dieser durchaus Vorteile – etwa einen größeren Lenkungswinkel und direkteres Ansprechverhalten – allerdings eignet er sich nicht für Nutzfahrzeuge: Denn er leistet kaum mehr als 2.000 Umdrehungen pro Minute. Zudem wären die Kosten höher, da für jedes Rad eine eigene Leistungselektronik erforderlich ist. »Beide entwickelten Varianten haben durchaus ihre Daseinsberechtigung und müssen zielgerichtet für den geplanten Fahrzeugtyp ausgewählt werden«, so Bräunlich.

Die Einzelmodule, die die verschiedenen Partner entwickelt haben, sind fertig, und auch die Herstellungsverfahren sind einsatzbereit. In einem nächsten Schritt setzt das Konsortium die Einzelteile nun zu einem Demonstrator zusammen. Ende 2015 wollen sie das Achsmodul dann in ein reales Auto einbauen und testen.

Hendrik Schneider | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Aufwind für die Luftfahrt: University of Twente entwickelt leistungsstarke Verbindungsmethode
23.01.2017 | University of Twente

nachricht Satellitengestützte Lasermesstechnik gegen den Klimawandel
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie