Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Wärmekraftmaschine aus einem Ion verspricht hohen Wirkungsgrad

23.01.2014
An der JGU wird erster Prototyp einer Ein-Ionen-Wärmekraftmaschine aufgebaut

Wissenschaftler der Universitäten in Mainz und Erlangen-Nürnberg arbeiten an einer Wärmekraftmaschine, die aus einem einzelnen Ion besteht. Eine solche Nano-Wärmekraftmaschine kann einen weit höheren Wirkungsgrad erreichen als etwa ein Automotor oder ein Kohlekraftwerk.


Ein Ion in einer Paul-Falle: Die Wärmekraftmaschine wird durch die auseinanderlaufenden Stäbe realisiert; die Quetschung erfolgt, indem spezielle elektrische Felder angelegt werden.

Eine Wärmekraftmaschine wandelt Wärme in nutzbare mechanische Energie um, wobei der Wirkungsgrad bei einem Ottomotor etwa 25 Prozent beträgt. Bei der vorgeschlagenen Nano-Wärmekraftmaschine aus einem Kalzium-Ion wäre die Effizienz deutlich höher.

Die Wissenschaftler wollen mit ihren Untersuchungen vor allem ein besseres Verständnis der Thermodynamik auf sehr kleinen Skalen erreichen. An der Johannes Gutenberg-Universität Mainz (JGU) wird derzeit ein erster Prototyp einer solchen Ein-Ionen-Wärmekraftmaschine aufgebaut.

Wie die Physiker in einem Beitrag für die Fachzeitschrift Physical Review Letters schreiben, folgt der Wirkungsgrad von Wärmekraftmaschinen, die mit thermischen Wärmebädern angetrieben werden, aus dem zweiten Hauptsatz der Thermodynamik, einer der Säulen der Physik. Die Obergrenze, das sogenannte Carnot-Limit, berechnete der Franzose Sadi Carnot bereits im Jahr 1824. In ihrem Vorschlag für eine Nano-Wärmekraftmaschine können die die Wissenschaftler das klassische Carnot-Limit überschreiten, indem sie die Wärmebäder manipulieren und nicht-klassische Zustände nutzen.

Anhand von Berechnungen und Simulationen wurde vor rund einem Jahr zum ersten Mal gezeigt, dass sich der thermodynamische Kreislauf eines Ottomotors mit einem einzelnen Ion nachstellen lässt. Dazu wird ein einzelnes Kalzium-40-Ion verwendet, eine Million mal kleiner als ein menschliches Haar. „Das Ion stellt im Grunde Kolben und Kurbelwelle, also den gesamten Motor dar“, erklärt Johannes Roßnagel von der Arbeitsgruppe QUANTUM der JGU. Das einzelne Ion würde nun in einer Paul-Falle gespeichert und mit Hilfe von Laserstrahlen und elektrischen Feldern nicht nur gekühlt und erhitzt, sondern zusätzlich noch gequetscht. „So können wir die Impuls-Orts-Verteilung für einen optimalen Wirkungsgrad maßschneidern“, erläutert Roßnagel. „Die Überschreitung des Carnot-Limits einer klassischen Wärmekraftmaschine bedeutet daher keine Verletzung des zweiten Hauptsatzes der Thermodynamik, sondern zeigt, dass die Verwendung speziell präparierter, nicht-thermischer Wärmebäder auch verbesserte Wirkungsgrade ermöglicht.“ In ihrer Publikation berechnen die Physiker für diesen Fall ein verallgemeinertes Carnot-Limit. Da die mechanische Leistung einer Ein-Ionen-Maschine äußerst gering ist, liegen mögliche Anwendungen ebenfalls beim Heizen oder Kühlen von Nanosystemen.

Die Manipulation von einzelnen Ionen mittels Laserstrahlen und elektrischen Feldern hat in den vergangenen Jahren eine hohe Perfektion erreicht, was auch durch die Vergabe des Nobelpreises 2012 gewürdigt wurde. Der Vorschlag für eine Ein-Ionen-Wärmekraftmaschine soll daher in ersten Experimenten tatsächlich in die Praxis umgesetzt und ein erster Prototyp im Labor aufgebaut werden.

Veröffentlichung:
Johannes Roßnagel et al.
Nanoscale Heat Engine Beyond the Carnot Limit
Physical Review Letters, 22. Januar 2014
DOI: 10.1103/PhysRevLett.112.030602
Abbildungen:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_waermekraftmaschine_1.jpg
Simulation des Otto-Motor-Kreislaufs der Ein-Ionen-Maschine: Die umschlossene Fläche entspricht der geleisteten Arbeit, die durch die Quetschung erheblich vergrößert wird.

Quelle: AG Quantum, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_waermekraftmaschine_2.jpg

Ein Ion in einer Paul-Falle: Die Wärmekraftmaschine wird durch die auseinanderlaufenden Stäbe realisiert; die Quetschung erfolgt, indem spezielle elektrische Felder angelegt werden.

Weitere Informationen:
Dipl. Phys. Johannes Roßnagel
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23671
Fax +49 6131 39-23428
E-Mail: j.rossnagel@uni-mainz.de
Weitere Links:
http://arxiv.org/pdf/1308.5935v2.pdf
(Nanoscale Heat Engine Beyond the Carnot Limit)
http://arxiv.org/pdf/1205.1362v1.pdf
(Single-Ion Heat Engine at Maximum Power, Physical Review Letters, November 2012)

Petra Giegerich | idw
Weitere Informationen:
http://www.quantenbit.de

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Modulares Fertigungssystem für Kettenräder
15.03.2017 | EMAG GmbH & Co. KG

nachricht Nimm zwei: Metallische Oberflächen effizient mit dem Laser strukturieren
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise