Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovationsnetzwerk: Bionic Silent Cut

12.06.2012
Die Fraunhofer-Institute IAO und LBF starten das Innovationsnetzwerk »Bionic Silent Cut« mit dem Ziel, bionische Strategien zur Lärmreduzierung zu entwickeln. Im Mittelpunkt steht die Geräuschminderung von Maschinen, Fertigungssystemen, Werkzeugen und Werkzeugaufnahmen für die spanende oder zerteilende Bearbeitung.

Lärm gilt mittlerweile weltweit als eine der wesentlichen Umweltverschmutzungen. Die Lärmemission in Arbeitsumgebungen der trennenden Bearbeitung stellt ein Problem dar und hat mitunter verheerende Folgen.

Die Maschinenbediener leiden unter Stress, Schwerhörigkeit und Konzentrationsstörungen. Sogar ein erhöhtes Herzinfarktrisiko wurde nachgewiesen. Daher wächst im Markt der trennenden Bearbeitung der Bedarf an Werkzeugen und Maschinen mit geringer Lärmemission.

In der Natur sind Dämpfungselemente weit verbreitet. Bei Tieren und Menschen dient die Dämpfungsfunktion zum Schutz des Körpers. Ein in der Natur wirkungsvoller hydrostatischer Dämpfer sind Knochen. Die Knochenmatrix setzt sich zu 10 Prozent aus Wasser, zu 20 Prozent aus organischen Materialien und zu 70 Prozent aus anorganischen Stoffen zusammen.
Auch in der Pflanzenwelt sind Dämpfungssysteme vielfältig, um durch Wind angeregte Schwingungen zu dämpfen. Diese und andere natürliche »Vorbilder« werden im Innovationsnetzwerk »Bionic Silent Cut« genauer untersucht.

Das Ziel des Innovationsnetzwerks ist es, bionische Ansätze zur Lärmreduzierung an Maschinen mit rotierenden Komponenten zu identifizieren und diese im Rahmen von Technologiestudien experimentell und numerisch zu untersuchen.
Das Fraunhofer IAO (Expertise: Bionik) und das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF (Expertise: Lärm- und Schwingungsreduktion) bündeln ihre Kompetenzen und durchlaufen mit ihren Projektpartnern vier Phasen:

Phase 1: Projekt-Kick-off und Definition der Suchrichtungen
Phase 2: Recherche Bionik & Ableitung von Wirkprinzipien
Phase 3: Recherche von ähnlichen Wirkprinzipien aus anderen Industrien & Ableitung von Lösungskonzepten
Phase 4: Durchführung von experimentellen und/oder numerischen Technologiestudien

Als Ergebnis des Innovationsnetzwerks wird ein Katalog bionischer Strategien zur Lärmreduzierung erarbeitet, sowie Ergebnisse der Technologiestudien zu ausgewählten bionischen Strategien bereitgestellt. Das Netzwerk richtet sich an die Hersteller und Anwender von Maschinen für die Verfahren Drehen, Fräsen, Bohren, Sägen, Stanzen und Schneiden. Für die Netzwerkpartner ergeben sich viele Vorteile: die systematische Einführung in die Bionik nach der Fraunhofer-Methode XBIOPS®, die Erarbeitung von Wissensvorsprüngen im Bereich Lärmreduzierung, geteilte Kosten für die Forschungsarbeit, die gemeinsame Nutzung der Forschungsergebnisse, geteiltes Innovationsrisiko sowie freier Zugang zur Bionikdatenbank des Fraunhofer IAO.
Ansprechpartner:
Truong Le
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Telefon +49 711 970-2108
truong.le@iao.fraunhofer.de

Claudia Garád | Fraunhofer-Institut
Weitere Informationen:
http://www.iao.fraunhofer.de

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flüssiger Wasserstoff im freien Fall
05.12.2016 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten