Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher tüfteln an Sensor-Aktuator-Systemen für Flugzeugtragflächen - Vorbild ist die elastische Haut von Delfinen

18.08.2008
Auf der Suche nach der perfekten Welle

Wer einmal das große Glück hatte, einem Delfin in dessen Element zu begegnen, der wird es bestätigen: Delfine schwimmen, als würden sie mühelos durch Luft "fliegen".

Dass die Tiere diese Fähigkeit unter anderem ihrer elastischen Haut verdanken, hat der deutsche Wissenschaftler Max Otto Kramer bereits in den 1950er Jahren mit Schleppversuchen nachgewiesen: Von einem Motorboot aus zog er mit verschiedenen Materialien bespannte Körper durchs Wasser. Wirklich ernst genommen hat man seine Theorien damals nicht.

Das ist heute anders: Seit den 1990er Jahren forschen weltweit verschiedene Arbeitsgruppen daran, wie unerwünschte Verwirblungen in einer Strömung möglichst stark gedämpft und im Idealfall ganz vermieden werden können. Denn jeder Widerstand kostet Energie und Zeit und damit Geld.

Grundlagen der Strömungsforschung sind deshalb für die Automobilindustrie, die Schiffs- und Meerestechnik sowie die Luft- und Raumfahrtindustrie - um nur einige zu nennen - in Zeiten knapper Energie-Ressourcen höchst relevant. An der Technischen Universität Berlin befassen sich zwei wissenschaftliche Mitarbeiter im Rahmen ihrer Promotion mit spannenden Strömungsversuchen. Allerdings in einem anderen Medium, als man es zunächst erwarten würde. Dipl.-Math.-techn. Nikolas Losse und Dipl.-Ing. Andreas Pätzold haben Termine in der Windkanalhalle am Institut für Luft- und Raumfahrt reserviert.

Eine Woche lang können sie nun für ihre jeweilige Promotion Handteller große Platten, die mit Schlitzen versehen sind, verschiedenen Strömungsgeschwindigkeiten aussetzen. "Im Unterschied zu den Versuchen von Max Kramer können wir die unterschiedliche Elastizität der Oberflächen rechnerisch simulieren", erläutert Nikolas Losse. Mit Oberflächensensoren sei es möglich, bei verschiedenen Strömungsgeschwin digkeiten und jeweils unterschiedlichen Elastizitäten die Verwirbelungen und ihren weiteren Verlauf zu messen und darzustellen. Mit so genannten Grenzschichtaktuatoren, die auf piezoelektrischen Keramiken basieren, wird die Strömung beeinflusst, indem günstige Wandelastizitäten simuliert werden. "Wir machen hier Grundlagenforschung", sagt Nikolas Losse.

Ursache für die unerwünschten Wirbel sind die so genannten Tollmien-Schlichting-Wellen. Wenn eine Tragfläche durch die Luft gleitet, bildet sich eine Grenzschicht, die zunächst laminar am Flügel anliegt. Winzige Störungen mit Wellencharakter (Tollmien-Schlichting-Wellen) verstärken sich jedoch mit zunehmender Strecke, die die Strömung an der Tragfläche zurücklegt. Die Grenzschicht ist nicht mehr laminar sondern turbulent - der Widerstand wird größer. "Es würde schon genügen, einen kleinen Bereich der gesamten Flügeltiefe mit geeigneten Sensoren und Aktuatoren auszurüsten, um den Reibungswiderstand zu verringern", sagt Andreas Pätzold. Am Computerbildschirm können die beiden Forscher mitverfolgen, wie sich die Tollmien-Schlichting-Wellen bei Strömungsgeschwindigkeiten im Kanal von bis zu 70 km/h bilden und anwachsen. Je nachdem, wie elastisch die getestete Oberfläche ist, werden die Wellenberge in der grafischen Darstellung flacher oder höher. "Langfristig ist es unser Ziel, die Wellen so zu dämpfen, dass kaum noch Reibungswiderstand auftritt", sagt Mathematiker Losse. Und erläutert, warum die Wirbel unerwünscht sind: Um eine bestimmte Geschwindigkeit zu halten, muss Energie aufgewendet werden. Je mehr Reibungswiderstand zusätzlich überwunden werden muss, desto mehr Energie wird verbraucht.

Das Thema der beiden TU-Doktoranden wird von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms "Strömungsbeeinflussung in der Natur und Technik" finanziert. Auch Forscher aus Stuttgart und Freiburg sind in das Projekt involviert. Die beiden Berliner haben klar getrennte Aufgaben: Andreas Pätzold vom Institut für Luft- und Raumfahrt ist für den Bereich Aerodynamik zuständig, Nikolas Losse kümmert sich um die Mess- und Regeltechnik. Das Programm läuft über sechs Jahre, wobei alle zwei Jahre von den einzelnen Projekten eine Verlängerung beantragt werden kann. Dieses Projekt befindet sich in der zweiten Förderphase.

Weitere Informationen erteilen Ihnen gern: Dipl.-Math.techn. Nikolas Losse, Technische Universität Berlin, Institut für Prozess- und Verfahrenstechnik, Fachgebiet Mess- und Regelungstechnik, Hardenbergstr. 36a, 10623 Berlin, Tel.: 030/314-79283, Fax:: 030/314-21129,

E-Mail: Nikolas.Losse@tu-berlin.de

Dipl.-Ing. Andreas Pätzold, Technische Universität Berlin, Institut für Luft- und Raumfahrt, Marchstraße 12, 10587 Berlin, Tel.: 030/314-21311, Fax: 030/314-22955, E-Mail: andreas.paetzold@ilr.tu-berlin.de,

Homepage: www.aero.tu-berlin.de

Weitere Informationen:
http://www.pressestelle.tu-berlin.de/medieninformationen/
http://www.pressestelle.tu-berlin.de/?id=4608
http://www.tu-berlin.de/?id=42712
http://www.mrt.tu-berlin.de
http://www.aero.tu-berlin.de

Dr. Kristina R. Zerges | idw
Weitere Informationen:
http://www.tu-berlin.de/?id=42712
http://www.mrt.tu-berlin.de
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Modulares Fertigungssystem für Kettenräder
15.03.2017 | EMAG GmbH & Co. KG

nachricht Nimm zwei: Metallische Oberflächen effizient mit dem Laser strukturieren
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE