Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrodendrehung beim Punktschweißen per Roboter verkürzt die Taktzeit

26.08.2008
Zeitgleich statt nacheinander — dies ist das Geheimnis von Robospin, einer neuen Verfahrenstechnik beim Widerstandspunktschweißen. Durch Elektrodendrehung per Roboter beim Fügen erfolgen das Schweißen und die Zangenversatzbewegung zeitgleich. So wird nicht nur die Taktzeit verkürzt, sondern auch die Qualität und die Kappenstandmenge verbessert.

Das Widerstandspunktschweißen ist gerade im Karosseriebau nach wie vor eines der am meisten eingesetzten Verbindungsverfahren. Doch mit dem Laserschweißen, besonders mit Scanneroptik, und den mechanischen Fügetechniken hat es ernsthafte Konkurrenz bekommen. Kuka Systems hat jetzt mit Robospin eine neue Verfahrenstechnik beim Widerstandspunktschweißen entwickelt, die durch Elektrodendrehung mit dem Roboter die Taktzeit verkürzt sowie Qualität und Standmenge der Elektrodenkappen verbessert.

Beim konventionellen Widerstandspunktschweißen erfolgt der eigentliche Schweißvorgang im Stillstand der Elektroden. In automatisierten Fertigungslinien mit Industrierobotern besteht eine Punktsequenz aus dem Versatz der Zange zum nächsten Schweißpunkt mit beschleunigen und abbremsen der Roboterachsen, dem Schließen der Zange mit Kraftaufbau, der Vorpreßzeit, dem Schweißen, der Nachpreßzeit, dem Öffnen der Zange und dem Versatz zum nächsten Schweißpunkt. Die Sequenzen Schweißen und Versetzen erfolgen zeitlich nacheinander.

In der neuen Verfahrenstechnik Robospin sind Hauptzeit (Schweißen) und Nebenzeit (Zangenversatzbewegung) überlagert. Dabei erfolgt der Versatz zum nächsten Punkt im Wesentlichen durch Orientierungsänderung aus den Roboterhandachsen.

Während des Schweißens bei geschlossener Zange bleiben die Hauptachsen in Bewegung weiter zum nächsten Punkt. Die Elektroden bleiben also während des Schweißprozesses nicht starr, sondern drehen sich auf der zu schweißenden Stelle um einen bestimmten Winkel. In der Phase der Drehbewegung um die Elektrodenachse bei geschlossener Zange erfolgen Kraftaufbau, Schweißen, Nachpressen und Einleitung der Zangenöffnung.

Kürzere Taktzeit und bessere Schweißqualität

Damit bewegt sich die Roboterkinematik mit den Haupt- und Nebenachsen schon auf den nächsten zu schweißenden Punkt zu, während der eigentliche Punkt noch geschweißt wird. Gleichermaßen werden die Nachpresszeit und ein Teil der Zangenöffnungszeit für die Versatzbewegung ausgenutzt. Schweißvorgang und Zangenversatzbewegung erfolgen somit zeitgleich parallel und nicht sequenziell mit Stillstand des Roboters während des Schweißens und anschließenden Beschleunigungs- und Abbremsphasen während der Versatzbewegung.

Diese neue Verfahrenstechnik des Widerstandspunktschweißens mit Elektrodendrehung um die Elektrodenachse wurde laut Kuka mit dem Ziel der Taktzeitverkürzung entwickelt. Gleichzeitig verbesserte sich die Schweißqualität durch reproduzierbarere Widerstandsbedingungen während der Drehphase und es erhöhte sich die Kappenstandmenge durch die kontinuierliche Elektrodenpflege bei der Drehung.

Haupt- und Nebenzeit überlagern sich

Der entscheidende Vorteil von Robospin liegt in der Taktzeitreduzierung, die sich durch die Überlagerung von Haupt- und Nebenzeit ergibt. Damit reduziert sich die Punkt-zu-Punkt-Zeit. Simulationsrechnungen von Kuka haben ergeben, dass je nach Zangenbauart und -anbringung, Schweißaufgabe sowie Lage des Bauteils im Arbeitsraum des Roboters Taktzeiteinsparungen von unter 5 bis über 30% möglich sind.

Bei der Optimierung werden offline zuerst die kollisionsfreien Drehwinkel bestimmt und anschließend die taktzeitminimalen Drehwinkel für die einzelnen Schweißpunkte. Gleichermaßen kann mit festen Drehwinkeln gearbeitet werden, wobei der kleinste maximale kollisionsfreie Winkel vorher ermittelt werden muss.

Die Verfahrensvariante Robospin führt aber auch zu einer Qualitätsverbesserung und Erhöhung der Kappenstandmenge. Durch die Drehbewegung der Elektroden beim Schweißen unter Kraft erfolgt eine kontrolliertere Abtragung der Anlegierungsschicht auf der Elektrodenwirkfläche, das heißt ein kontinuierliches Elektrodenkappendressing beim Schweißen.

Bartbildung wie beim konventionellen Punktschweißen wird vermieden

Zudem wird im Vergleich zum konventionellen Punktschweißen die Bartbildung vermieden. Die Drehbewegung der Elektroden sorgt auch für eine Konstanthaltung der Elektrodenwirkfläche und damit der Stromdichte beim Schweißen. Damit ist kein Steppen notwendig, weil die Elektrodengeometrie gleich bleibt. Weiterer positiver Nebeneffekt ist das Schonen der Robotermechanik sowie von Motor und Getriebe durch die kontinuierliche Bewegung.

Weitere Untersuchungen sollen Aufschluss darüber bringen, inwieweit die neue Verfahrenstechnik Robospin eine Verbesserung des Widerstandspunktschweißens von Aluminium-Stahl-Verbindungen ermöglicht oder inwieweit sich die Punktschweißbarkeit von Aluminium durch Zerstörung der Oxidschicht verbessert. Zudem soll die Schweißeignung von nicht oder schwer punktschweißbaren Werkstoffen ermittelt werden.

Rüdiger Kroh | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/verbindungstechnik/articles/141736/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Modulares Fertigungssystem für Kettenräder
15.03.2017 | EMAG GmbH & Co. KG

nachricht Nimm zwei: Metallische Oberflächen effizient mit dem Laser strukturieren
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE