Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bis zu 30 Prozent mehr Effizienz: Motorenforscher enträtseln Vorentflammung

08.04.2013
Auf der am 11. Mai beginnenden Frühjahrstagung der Forschungsvereinigung für Verbrennungskraftmaschinen (FVV) diskutieren Wissenschaftler und Motorenentwickler, wie moderne Fahrzeugantriebe noch effizienter werden können.

Dass weiterhin erhebliches Potenzial besteht, zeigt ein kürzlich abgeschlossenes Projekt des Karlsruher Instituts für Technologie. Künftig soll der Ladedruck deutlich gesteigert werden, ohne dass die Dauerhaltbarkeit des Motors leidet.


Vorentflammungen im Brennraum eines Ottomotors mit Direkteinspritzung
Stefan Palaveev, IFKM am KIT

Moderne Benzinmotoren könnten um bis zu 30 Prozent effizienter arbeiten, wenn sich der Kraftstoff bei hoher Belastung nicht schon vor der regulären Fremdzündung durch die Zündkerze unkontrolliert selbst entzünden würde. Dieses Phänomen, „Vorentflammung“ genannt, ist für den Motor höchst gefährlich.

Im Extremfall steigen dadurch der Druck und die Temperatur im Zylinder so stark, dass sich vor Beendigung der Verbrennung eine extrem stark klopfende Verbrennung mit sehr hohen Druckspitzen ergibt, durch die der Motor zerstört wird. Besonders ausgeprägt ist die Vorentflammung bei High-Tech-Ottomotoren, die dank Aufladung und Direkteinspritzung hohe Leistungen aus kleinen Hubräumen holen. Zwar treten solche Ereignisse sehr selten auf, um sie aber sicher ausschließen zu können, muss bei Serienmotoren der maximale Ladedruck niedriger gehalten werden, als es für eine optimale Verbrennung notwendig wäre.

Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben im Auftrag der Forschungsvereinigung für Verbrennungskraftmaschinen (FVV) untersucht, unter welchen Bedingungen sich das Benzin im Motor selbst entzündet. Innerhalb von mehreren hundert Millionen Verbrennungsvorgängen wurden einzelne Vorentflammungen – Brandherde sozusagen – ermittelt und untersucht. Indem der Verbrennungsablauf im Versuchsmotor über Lichtwellenleiter in einer Zündkerze und einem speziellen Lichtfaser-Endoskop mittels Hochgeschwindigkeitskamera beobachtet wurde, konnte genau nachvollzogen werden, wo die Vorentflammungen auftraten.

In dem gerade abgeschlossenen Forschungsvorhaben zeigte sich, dass Vorentflammungen meist in der Nähe des Kolbenbodens oder der Zylinderwände auftreten. So erhärtete sich der bereits bestehende Verdacht, dass Vorentflammungen hauptsächlich auf die Interaktion von direkt eingespritzten Kraftstofftropfen mit der Zylinderwand und dem sich darauf befindenden Schmierfilm zurückzuführen sind.
Die Untersuchungen am KIT zeigen auch, dass es eine ganze Reihe wirksamer Gegenmaßnahmen gibt, um die Häufigkeit von Vorentflammungen signifikant zu vermindern. So kann eine gezielte Beschleunigung der in den Motor strömenden Luft – etwa über elektrisch verstellbare Klappen in der Ansauganlage – zu einer besseren Durchmischung des Luft-Kraftstoff-Gemisches im Zylinder führen. Die Rate, mit der Vorentflammungen auftraten, reduzierte sich beim Einsatz eines solchen Systems deutlich.

Eine besonders entscheidende Rolle spielt das Einspritzsystem selbst. So konnte durch die Umstellung von Einloch-Einspritzdüsen auf Einspritzdüsen mit sechs Löchern die Anzahl der Vorentflammungen reduziert werden. Mit solchen Einspritzdüsen kann der Kraftstoff nämlich im Zylinder gleichmäßiger verteilt werden, ein geringerer Anteil des Kraftstoffs landet auf der Zylinderwand. Positiv wirkt es sich außerdem aus, wenn der Kraftstoff nicht auf einmal, sondern in mehreren Portionen eingespritzt wird. „Generell sollte der Kraftstoff nicht in flüssiger Form an die Zylinderwand gelangen“, erläutert Prof. Dr. Ulrich Spicher, der das Vorhaben verantwortete.

Auch die Eigenschaften des eingesetzten Kraftstoffs und des Motoröls haben einen Einfluss auf die Häufigkeit von Vorentflammungen. Erfolgt die vollständige Verdampfung des Kraftstoffs erst bei höheren Temperaturen, so kann der Einspritzstrahl tiefer in den Brennraum eindringen – und benetzt dabei mit höherer Wahrscheinlichkeit die Zylinderwand. Beim Öl scheinen dem Öl beigemischte Additive ebenfalls einen Einfluss auf die Entzündungswahrscheinlichkeit zu haben.

Mit den im FVV-Vorhaben gewonnenen Erkenntnissen sollen Motorenentwickler künftige Antriebe so auslegen können, dass der effektive Mitteldruck von derzeit maximal 20 bis 24 bar auf bis zu 30 bar angehoben wird. Der effektive Mitteldruck ist ein Maß für die auf den Hubraum des Motors bezogene mechanische Arbeit, die für den Fahrzeugantrieb zur Verfügung steht. „Dies ist besonders interessant, wenn man bei niedrigen Drehzahlen beschleunigt“, so Spicher. „Künftige Motoren könnten mehr Drehmoment und damit bessere Beschleunigung bieten – und trotzdem weniger verbrauchen.“

Stefanie Jost-Köstering | idw
Weitere Informationen:
http://www.fvv-net.de

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hologramm für Moleküle

26.09.2017 | Biowissenschaften Chemie

Das Motorprotein tanzt in unseren Zellen

26.09.2017 | Biowissenschaften Chemie

Tauben beim Multitasking besser als Menschen

26.09.2017 | Biowissenschaften Chemie