Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Töne mit Licht hören: eine Idee für Hörprothesen der Zukunft?

04.03.2014

Internationales Forscherteam unter Leitung von Wissenschaftlern der Universitätsmedizin Göttingen entwickelt Stimulation des Hörorgans mit Licht. Veröffentlichung im "Journal of Clinical Investigation"

Vogelgezwitscher und Musik - das sind Hörerlebnisse, die schwersthörigen Menschen trotz moderner Technologie weiterhin verwehrt sind. Hörprothesen wie Cochlea-Implantate können die dafür nötige hohe Qualität beim Hören nicht liefern. Wie ließe sich das Hören mit Cochlea-Implantaten weiter verbessern? Ein internationales Forscherteam unter Leitung von Wissenschaftlern der Universitätsmedizin Göttingen (UMG) hat einen neuen Weg ausgelotet. Die Idee: Licht statt - wie bisher - Strom als Stimulans zum Hören. Den Forschern ist es erstmals gelungen, das Hörsystem im Tiermodell durch optogenetische Stimulation mit Licht zu aktivieren.


Funktionsweise des Cochlea Implantats Oben: elektrisches Implantat in der Hörschnecke mit 12 Elektrodenkontakten, von denen sich der Strom weit ausbreitet. Unten: zukünftiges optisches Implantat mit dutzenden Mikroleuchtdioden, deren Licht auf die Nervenzellen in der Mitte der Hörschnecke fokussiert wird. Grafik: umg

Die Forschungen wurden unter der Leitung von Prof. Dr. Tobias Moser, Klinik für Hals-Nasen-Ohrenheilkunde der UMG, in einem Projekt innerhalb des Göttinger Fokus für Neurotechnologie (Sprecher: Prof. Dr. Florentin Wörgötter, 3. Physikalisches Institut - Biophysik, Universität Göttingen) durchgeführt. Gefördert haben das Projekt das Bundesministerium für Bildung und Forschung (BMBF) und das Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der UMG. Die Ergebnisse aus der translationalen Hörforschung wurden am 10. Februar 2014 online in dem renommierten amerikanischen Medizin-Fachjournal "Journal of Clinical Investigation" vorab veröffentlicht.

Originalveröffentlichung:
Victor H Hernandez, Anna Gehrt*, Kirsten Reuter*, Zhizi Jing*, Marcus Jeschke, Alejandro Mendoza Schulz, Gerhard Hoch, Matthias Bartels, Gerhard Vogt, Carolyn W Garnham, Hiromu Yawo, Yugo Fukazawa, George J Augustine, Ernst Bamberg, Sebastian Kügler, Tim Salditt, Livia de Hoz, Nicola Strenzke, Tobias Moser (2014) Optogenetic stimulation of the auditory pathway. Journal of Clinical Investigation.

Wenn Hörgeräte nicht mehr helfen, können Cochlea Implantate die Nervenzellen der Hörschnecke direkt elektrisch stimulieren. Cochlea Implantate ermöglichen so den meisten der weltweit inzwischen mehr als 200.000 Nutzern ein Sprachverstehen. Doch Tonhöhen und Lautstärke beim Hören zu unterscheiden, gelingt mit bisherigen Cochlea Implantaten nur sehr begrenzt. Warum es dazu kommt, ist bekannt: Der Effekt ergibt sich aus der massiven Ausbreitung des elektrischen Stroms von jedem Elektroden-Kontakt. Dadurch werden stets sehr viele Hörnervenzellen gleichzeitig stimuliert.

Würde Licht anstelle von Strom zur Stimulation verwendet, kann dieses grundsätzliche Problem wahrscheinlich gelöst werden. Diese Erwartung wird durch die ersten Erkenntnisse bestätigt, die das Forscherteam mit Licht als Stimulans zum Hören in Untersuchungen an Nagetieren gewonnen hat. Für ihre Untersuchungen setzten die Forscher erstmals ein in Deutschland entwickeltes Verfahren, die sogenannte Optogenetik, erfolgreich für die Stimulation des Hörnervens ein. Bei diesem Verfahren werden lichtempfindliche Signalproteine als "Lichtschalter" genetisch in Zellen eingebaut. "Weil Licht besser fokussierbar ist, könnten dann entlang der Hörschnecke viele unabhängige Stimulationskanäle genutzt werden. Diese Innovation verspricht eine fundamentale Verbesserung bei der Unterscheidung von Tonhöhe und Lautstärke", sagt Senior-Autor der Publikation und Leiter des Projekts, Prof. Dr. Tobias Moser von der Klinik für Hals-Nasen-Ohrenheilkunde der Universitätsmedizin Göttingen.

WIE KÖNNEN NERVENZELLEN DER HÖRSCHNECKE MIT LICHT ANGEREGT WERDEN?

Um die Nervenzellen der Hörschnecke mit Licht aktivieren zu können, wurden zunächst die lichtgesteuerte Ionenpore Kanalrhodopsin in die Nervenzellen der Hörschnecke von Mäusen und Ratten eingebaut. Dabei kommen auch virale Genfähren zum Einsatz, die in der Gentherapie beim Menschen eingesetzt werden. Zusätzlich müssen Mikro-Leuchtdioden oder Laser-gekoppelte Mikro-Glasfasern mikrochirurgisch in die Hörschnecke implantiert werden.

ERGEBNISSE

"Die optogenetische Aktivierung ist uns gelungen. Im Versuch registrieren wir sie als Nervenimpulse einzelner Hörnervenzellen oder als Summenpotenziale der Hörbahn", sagt Anna Gehrt, eine der Erst-Autoren der Publikation und forschende Ärztin der Klinik für Hals-Nasen-Ohrenheilkunde der UMG: "Mittels optogenetisch-evozierter Potenziale können wir eine Aktivierung der Hörbahn auch in Mausmodellen der menschlichen Schwerhörigkeit nachweisen". Schließlich gelang den Forschern auch eine erste Abschätzung der Frequenzselektivität von optogenetischer Stimulation im Vergleich mit elektrischer Anregung. Das Ergebnis entspricht den Vorhersagen aus mathematischen Modellen: Bei der Stimulation mit Licht zeigte sich eine feinere Frequenzauflösung, d.h. der aktivierte Bereich der Hörschnecke war bei Reizung mit Licht kleiner als bei der Stimulation mit elektrischem Strom.

"Das Hörsystem kann also durch optogenetische Stimulation aktiviert werden. Aber bis zu einer Anwendung in der klinischen Rehabilitation der Schwerhörigkeit bleibt viel zu tun", sagt Prof. Moser. Daran arbeiten bereits die Kooperationspartner vom Freiburger Fraunhofer Institut für Angewandte Physik und der Universität Freiburg. Sie entwickeln im BMBF-Projekt "Lichthören" optische Multikanal-Implantate mit mehr als hundert Mikroleuchtdioden. Prof. Moser sieht noch weitere Hürden, die zu bewältigen sind: Schnellere "Lichtschalter" müssen entwickelt werden, um den Ansprüchen der Signalverarbeitung im Hörsystem gerecht zu werden. Schließlich braucht die Forschung für die Entwicklung einer optogenetischen Hörprothese effiziente und sichere Genfähren. Und auch die Frage, ob es durch das Stimulationslicht möglicherweise zu Schäden kommt, muss zuvor geklärt sein.

Cochlea Implantate ermöglichen schwersthörigen Menschen ein begrenztes Hörvermögen. Die Nachteile der elektrischen Reizung sind eine geringe Auflösung von Tonhöhen und Lautstärken. Eine räumlich präzisere optogenetische Reizung verspricht eine feinere Auflösung beider Schalleigenschaften und damit ein verbessertes Sprachverstehen und mehr Musikgenuss.

WEITERE INFORMATIONEN
Zu den Arbeitsgruppen von Prof. Dr. T. Moser und Dr. N. Strenzke an der UMG: www.innerearlab.uni-goettingen.de

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen
Klinik für Hals-Nasen-Ohrenheilkunde. InnenOhrLabor
Prof. Dr. Tobias Moser
Telefon 0551 / 39-8968, tmoser@gwdg.de
www.universitaetsmedizin-goettingen.de

Prof. Dr. Tobias Moser | Universitätsmedizin Göttingen

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Fake News finden und bekämpfen
17.08.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie