Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker schrumpfen Teilchenbeschleuniger

06.10.2015

Ein interdisziplinäres Forscherteam hat den ersten Prototyp eines Miniatur-Teilchenbeschleunigers gebaut, der mit Terahertz- anstelle von Hochfrequenz-Strahlung funktioniert. Ein einzelnes Beschleunigungsmodul ist dabei nur 1,5 Zentimeter lang und einen Millimeter dünn. Die Terahertz-Technik verspricht eine Miniaturisierung um mindestens den Faktor 100, wie die Wissenschaftler um DESY-Forscher Franz Kärtner vom Center for Free-Electron Laser Science (CFEL) betonen. Sie stellen ihren Prototyp im Fachblatt „Nature Communications“ vor. Das CFEL ist eine Kooperation von DESY, Universität Hamburg und Max-Planck-Gesellschaft.

Für kompakte Terahertz-Beschleuniger sehen die Autoren zahlreiche Anwendungen in Materialforschung, Medizin und Teilchenphysik sowie bei Röntgenlasern. Terahertz-Strahlung liegt im elektromagnetischen Spektrum zwischen Infrarotlicht und Mikrowellen.


Terahertz-Beschleunigermodule passen problemlos in eine Hand.

Bild: DESY/Heiner Müller-Elsner

Üblicherweise wird in Teilchenbeschleunigern elektromagnetische Strahlung im Hochfrequenzbereich von Radiowellen verwendet, bei DESYs Beschleuniger PETRA III beträgt dieser Wert beispielweise 500 Megahertz. Die Wellenlänge der hier verwendeten Terahertz-Strahlung ist rund tausendmal kürzer.

„Der Vorteil: Alles wird tausendmal kleiner,“ erläutert Kärtner, der auch Professor an der Universität Hamburg und am Massachusetts Institute of Technology (MIT) in den USA sowie Mitglied im Hamburger Exzellenzcluster Center for Ultrafast Imaging (CUI) ist.

Für ihren Prototyp, der in Kärtners Labor am MIT in Boston aufgebaut wurde, verwendeten die Forscher ein spezielles, mikrostrukturiertes Beschleunigermodul, das für Terahertz-Strahlung maßgeschneidert ist. Aus einer Art Elektronenkanone, die von der Gruppe um den CFEL-Professor Dwayne Miller, Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie und ebenfalls CUI-Mitglied, bereitgestellt wurde, schossen die Physiker schnelle Elektronen in das Miniatur-Beschleunigermodul, die dort von der eingespeisten Terahertz-Strahlung weiter beschleunigt wurden. Die Energie der Teilchen erhöhte sich in diesem ersten Prototyp eines Terahertz-Beschleunigers um sieben Kiloelektronenvolt (keV).

„Diese Beschleunigung ist noch nicht sehr stark, aber der Versuch belegt, dass dieses Prinzip in der Praxis funktioniert“, erläutert Ko-Autor Arya Fallahi vom CFEL, der für die theoretischen Berechnungen zuständig war.

„Die Theorie zeigt, dass ein Beschleunigungsgradient von bis zu einem Gigavolt pro Meter möglich ist.“ Das liegt mehr als zehn Mal über dem Wert, den die besten konventionellen Beschleunigermodule heute erreichen. Eine noch stärkere Beschleunigung verspricht die ebenfalls experimentelle Plasmabeschleuniger-Technik, die allerdings auch deutlich stärkere Laser zum Betrieb erfordert als Terahertz-Beschleuniger.

Die Terahertz-Technik sei sowohl im Hinblick auf künftige Linearbeschleuniger für die Teilchenphysik interessant, als auch für den Bau kompakter Röntgenlaser und Elektronenquellen für die Materialforschung sowie für die medizinische Anwendung von Röntgen- und Elektronenstrahlen, schreiben die Physiker.

„Die rasanten Fortschritte, die wir bei der Erzeugung von Terahertz-Strahlung mit optischen Methoden erleben, wird künftig die Entwicklung von Terahertz-Beschleunigern für diese Anwendungen ermöglichen“, betont Erstautor Emilio Nanni vom MIT.

In den kommenden Jahren möchten die Hamburger CFEL-Physiker auf Terahertz-Basis einen experimentellen kompakten Freie-Elektronen-Röntgenlaser (XFEL) im Laborformat aufbauen. Dieses Projekt wird von einem Synergy Grant des European Research Council unterstützt.

Sogenannte Freie-Elektronen -Laser (FEL) erzeugen Laserblitze, indem sie schnelle Elektronen aus einem Teilchenbeschleuniger auf einen Slalomkurs schicken, wobei sie in jeder Kurve Licht abgeben. Nach diesem Prinzip arbeitet auch der Europäische Röntgenlaser European XFEL, der im Rahmen eines internationalen Konsortiums derzeit vom Hamburger DESY-Campus bis ins benachbarte Schenefeld in Schleswig-Holstein gebaut wird. Diese Anlage ist mehr als drei Kilometer lang.

Der experimentelle XFEL auf Basis der Terahertz-Technik soll dagegen nicht einmal einen Meter messen. Allerdings werden seine Blitze nicht so energiereich sein wie aus einer großen Anlage. Dafür lassen sie sich kürzer machen und könnten dadurch in der Spitze kurzzeitig fast dieselbe Helligkeit erreichen. „Von so einem Gerät erwarten wir deutlich kürzere Röntgenpulse von unter einer Femtosekunde“, erläutert Kärtner. „Damit erhoffen wir uns neue Einblicke in extrem schnelle chemische Prozesse wie zum Beispiel die Photosynthese.“

Wenn Forscher die Photosynthese im Detail verstehen lernen, würde sich die Chance eröffnen, diesen effizienten Prozess künstlich nachzubilden und damit verbesserte Solarzellen zu bauen und neue Möglichkeiten zur CO2-Reduktion zu finden. Darüber hinaus interessieren sich Forscher für zahlreiche andere chemische Reaktionen.

„Die Photosynthese ist nur ein Beispiel für alle möglichen katalytischen Prozesse, die wir erkunden wollen“, betont Kärtner. Der kompakte Röntgenlaser eignet sich grundsätzlich auch, um Pulse in großen derartigen Anlagen auszulösen und dadurch deren optische Qualität zu verbessern. Außerdem könnten bestimmte medizinische Abbildungsverfahren von den verbesserten Eigenschaften der neuen Röntgenquelle profitieren.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
„Terahertz-driven linear electron acceleration“; Emilio A. Nanni, Wenqian R. Huang, Kyung-Han Hong, Koustuban Ravi, Arya Fallahi, Gustavo Moriena, R. J. Dwayne Miller & Franz X. Kärtner; „Nature Communications”, 2015; DOI: 10.1038/NCOMMS9486

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie