Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker schrumpfen Teilchenbeschleuniger

06.10.2015

Ein interdisziplinäres Forscherteam hat den ersten Prototyp eines Miniatur-Teilchenbeschleunigers gebaut, der mit Terahertz- anstelle von Hochfrequenz-Strahlung funktioniert. Ein einzelnes Beschleunigungsmodul ist dabei nur 1,5 Zentimeter lang und einen Millimeter dünn. Die Terahertz-Technik verspricht eine Miniaturisierung um mindestens den Faktor 100, wie die Wissenschaftler um DESY-Forscher Franz Kärtner vom Center for Free-Electron Laser Science (CFEL) betonen. Sie stellen ihren Prototyp im Fachblatt „Nature Communications“ vor. Das CFEL ist eine Kooperation von DESY, Universität Hamburg und Max-Planck-Gesellschaft.

Für kompakte Terahertz-Beschleuniger sehen die Autoren zahlreiche Anwendungen in Materialforschung, Medizin und Teilchenphysik sowie bei Röntgenlasern. Terahertz-Strahlung liegt im elektromagnetischen Spektrum zwischen Infrarotlicht und Mikrowellen.


Terahertz-Beschleunigermodule passen problemlos in eine Hand.

Bild: DESY/Heiner Müller-Elsner

Üblicherweise wird in Teilchenbeschleunigern elektromagnetische Strahlung im Hochfrequenzbereich von Radiowellen verwendet, bei DESYs Beschleuniger PETRA III beträgt dieser Wert beispielweise 500 Megahertz. Die Wellenlänge der hier verwendeten Terahertz-Strahlung ist rund tausendmal kürzer.

„Der Vorteil: Alles wird tausendmal kleiner,“ erläutert Kärtner, der auch Professor an der Universität Hamburg und am Massachusetts Institute of Technology (MIT) in den USA sowie Mitglied im Hamburger Exzellenzcluster Center for Ultrafast Imaging (CUI) ist.

Für ihren Prototyp, der in Kärtners Labor am MIT in Boston aufgebaut wurde, verwendeten die Forscher ein spezielles, mikrostrukturiertes Beschleunigermodul, das für Terahertz-Strahlung maßgeschneidert ist. Aus einer Art Elektronenkanone, die von der Gruppe um den CFEL-Professor Dwayne Miller, Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie und ebenfalls CUI-Mitglied, bereitgestellt wurde, schossen die Physiker schnelle Elektronen in das Miniatur-Beschleunigermodul, die dort von der eingespeisten Terahertz-Strahlung weiter beschleunigt wurden. Die Energie der Teilchen erhöhte sich in diesem ersten Prototyp eines Terahertz-Beschleunigers um sieben Kiloelektronenvolt (keV).

„Diese Beschleunigung ist noch nicht sehr stark, aber der Versuch belegt, dass dieses Prinzip in der Praxis funktioniert“, erläutert Ko-Autor Arya Fallahi vom CFEL, der für die theoretischen Berechnungen zuständig war.

„Die Theorie zeigt, dass ein Beschleunigungsgradient von bis zu einem Gigavolt pro Meter möglich ist.“ Das liegt mehr als zehn Mal über dem Wert, den die besten konventionellen Beschleunigermodule heute erreichen. Eine noch stärkere Beschleunigung verspricht die ebenfalls experimentelle Plasmabeschleuniger-Technik, die allerdings auch deutlich stärkere Laser zum Betrieb erfordert als Terahertz-Beschleuniger.

Die Terahertz-Technik sei sowohl im Hinblick auf künftige Linearbeschleuniger für die Teilchenphysik interessant, als auch für den Bau kompakter Röntgenlaser und Elektronenquellen für die Materialforschung sowie für die medizinische Anwendung von Röntgen- und Elektronenstrahlen, schreiben die Physiker.

„Die rasanten Fortschritte, die wir bei der Erzeugung von Terahertz-Strahlung mit optischen Methoden erleben, wird künftig die Entwicklung von Terahertz-Beschleunigern für diese Anwendungen ermöglichen“, betont Erstautor Emilio Nanni vom MIT.

In den kommenden Jahren möchten die Hamburger CFEL-Physiker auf Terahertz-Basis einen experimentellen kompakten Freie-Elektronen-Röntgenlaser (XFEL) im Laborformat aufbauen. Dieses Projekt wird von einem Synergy Grant des European Research Council unterstützt.

Sogenannte Freie-Elektronen -Laser (FEL) erzeugen Laserblitze, indem sie schnelle Elektronen aus einem Teilchenbeschleuniger auf einen Slalomkurs schicken, wobei sie in jeder Kurve Licht abgeben. Nach diesem Prinzip arbeitet auch der Europäische Röntgenlaser European XFEL, der im Rahmen eines internationalen Konsortiums derzeit vom Hamburger DESY-Campus bis ins benachbarte Schenefeld in Schleswig-Holstein gebaut wird. Diese Anlage ist mehr als drei Kilometer lang.

Der experimentelle XFEL auf Basis der Terahertz-Technik soll dagegen nicht einmal einen Meter messen. Allerdings werden seine Blitze nicht so energiereich sein wie aus einer großen Anlage. Dafür lassen sie sich kürzer machen und könnten dadurch in der Spitze kurzzeitig fast dieselbe Helligkeit erreichen. „Von so einem Gerät erwarten wir deutlich kürzere Röntgenpulse von unter einer Femtosekunde“, erläutert Kärtner. „Damit erhoffen wir uns neue Einblicke in extrem schnelle chemische Prozesse wie zum Beispiel die Photosynthese.“

Wenn Forscher die Photosynthese im Detail verstehen lernen, würde sich die Chance eröffnen, diesen effizienten Prozess künstlich nachzubilden und damit verbesserte Solarzellen zu bauen und neue Möglichkeiten zur CO2-Reduktion zu finden. Darüber hinaus interessieren sich Forscher für zahlreiche andere chemische Reaktionen.

„Die Photosynthese ist nur ein Beispiel für alle möglichen katalytischen Prozesse, die wir erkunden wollen“, betont Kärtner. Der kompakte Röntgenlaser eignet sich grundsätzlich auch, um Pulse in großen derartigen Anlagen auszulösen und dadurch deren optische Qualität zu verbessern. Außerdem könnten bestimmte medizinische Abbildungsverfahren von den verbesserten Eigenschaften der neuen Röntgenquelle profitieren.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
„Terahertz-driven linear electron acceleration“; Emilio A. Nanni, Wenqian R. Huang, Kyung-Han Hong, Koustuban Ravi, Arya Fallahi, Gustavo Moriena, R. J. Dwayne Miller & Franz X. Kärtner; „Nature Communications”, 2015; DOI: 10.1038/NCOMMS9486

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

nachricht 36 Forschungsprojekte zu Big Data
21.02.2017 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften