Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gleichtakt als Schlüssel zur Intelligenz

01.07.2016

Kieler Forschungsteam ahmt wichtige Funktionsprinzipien des Gehirns technisch nach

Wie erfasst, verarbeitet und speichert das menschliche Gehirn den ständig einwirkenden Datenstrom? Wie bewältigt es kognitive Aufgaben, die eine komplexe Interaktion zwischen verschiedenen Hirnarealen erfordern und die viel schneller arbeitende Hochleistungsrechner überfordern? Warum kann das Gehirn dies alles mit einem extrem geringen Energieaufwand bewältigen?


Wie in einem neuronalen Netzwerk beginnen die verbundenen Oszillatoren miteinander zu kommunizieren…

Foto: Christian Urban, Universität Kiel


…und synchronisieren sich nach einer Weile, bis sie wie echte Neuronen alle im gleichen Takt schwingen.

Foto: Christian Urban, Universität Kiel

Diese beeindruckende Leistungsfähigkeit des menschlichen Gehirns technisch nachzuvollziehen und seine Arbeitsweise in künstlichen neuronalen Netzwerken umzusetzen, ist das Ziel eines Kieler Forschungsteams um Professor Hermann Kohlstedt, Leiter des Fachbereichs Nanoelektronik an der Technischen Fakultät der Christian-Albrechts-Universität zu Kiel (CAU) und Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten überregionalen Verbundforschungsprojekts „Memristive Bauelemente für neuronale Systeme“ (FOR 2093).

Den Kieler Wissenschaftlerinnen und Wissenschaftlern ist es nun gelungen, zwei grundlegende Arbeitsprinzipien des menschlichen Gehirns, Gedächtnis und Synchronisation, elektronisch nachzubilden. Ihre Ergebnisse publizierten sie vor kurzem in der Fachzeitschrift Applied Physics Letters.

Das menschliche Gehirn ist ein Meister der Energieeffizienz. Seine rund 100 Milliarden Nervenzellen, auch Neuronen genannt, kommen mit einer Leistung von nur rund 20 Watt aus. Um ähnlich komplexe Rechenoperationen durchzuführen, wie sie das Gehirn bewältigt, benötigen moderne Hochleistungsrechner das Vieltausendfache an Energie.

Die Neuronen des Gehirns sind durch Synapsen miteinander verknüpft und bilden ein hochkomplexes Netzwerk. Unter dem Begriff „Lernen“ im neurologischen Sinne versteht man, dass die synaptischen Verbindungen im Gehirn nicht statisch festgelegt sind. Stattdessen passen sie sich ständig auf Grund von Umwelteinflüssen, zum Beispiel Sinneseindrücken, neu an. Damit wird eine lokale Speicherung neuer Gedächtnisinhalte möglich, man spricht von der neurologischen Plastizität des Gehirns.

Neben dieser räumlichen Anpassungsfähigkeit neuronaler Verbindungen existiert ein weiterer wichtiger Baustein für die Informationsverarbeitung im Gehirn: die Synchronisation von Neuronenverbänden. Elektrische Impulse, sogenannte Aktionspotenziale, bilden die Grundeinheit der Informationsverarbeitung im Gehirn. Diese Impulse übermitteln permanent Informationen zwischen den Neuronen, dabei überqueren und beeinflussen sie die synaptischen Verbindungen des Gehirns.

„Im Falle von bewussten Sinneswahrnehmungen verändert sich das räumlich unregelmäßige Auftreten von neuronalen Impulsen plötzlich und zeitlich begrenzt hin zu geordneten Strukturen“, sagt Professor Thorsten Bartsch, Neurologe an der CAU und Mitglied in der Forschungsgruppe. Die zuvor unabhängigen Impulse der Neuronen synchronisieren sich in diesem Fall selbst über weit entfernte Hirnbereiche hinweg.

Dieses synchronisierte „Feuern“ lässt sich auch am lebendigen Menschen mittels Hirnstrommessungen (Elektroenzephalografie, EEG) nachweisen. „Schon seit langem wird diskutiert, ob das menschliche Bewusstsein eng mit dieser Synchronisation der neuronalen Impulse verknüpft ist. Möglicherweise liegt darin der Schlüssel zum besseren Verständnis der Gehirnfunktionen“, so Bartsch weiter.

Die Kieler Wissenschaftlerinnen und Wissenschaftlern haben nun diese beiden Prinzipien der Arbeitsweise des Gehirns, also die Speicherung von Gedächtnisinhalten in den Synapsen und die Synchronität der neuronalen Impulse innerhalb eines elektronischen Schaltkreises nachgebildet. „Dabei haben wir neuartige elektronische Bauelemente verwendet, mit deren Hilfe sich Gedächtnisprozesse nachbilden lassen“, erklärt Kohlstedt.

Diese Bauelemente werden als Memristoren (von englisch „memory“ für Gedächtnis und „resistor“ für Widerstand) bezeichnet. Sie zeichnen sich dadurch aus, dass ihr elektrischer Widerstand von der zuvor geflossenen Ladung abhängt. „Auf diesem Weg lassen sich analog zu den ‚Gedächtniselementen‘ in biologischen Netzwerken unterschiedliche Zustände abspeichern“, ergänzt Dr. Martin Ziegler, Wissenschaftler im Fachbereich Nanoelektronik und Teilprojektleiter in der Forschungsgruppe.

In ihrer elektronischen Schaltung koppelten die Kieler Forschenden nun zwei Oszillatoren miteinander über Memristoren. Oszillatoren sind Schaltungen, die periodische Spannungsimpulse erzeugen – analog zum „Feuern“ der Neuronen im Gehirn. Anfangs verliefen ihre Impulse asynchron, die beiden Oszillatoren waren also zunächst entkoppelt.

Dank der adaptiven „Gedächtniselemente“ synchronisierten sich ihre Schwingungen jedoch nach kurzer Zeit. Die Forschenden konnten so eine elektrische Schaltung mit denselben grundlegenden Eigenschaften ausstatten, die auch ein biologisches neuronales Netzwerk kennzeichnen. Die nun vorliegende Publikation bildet ein erstes Etappenziel für das aus rund zwanzig Wissenschaftlerinnen und Wissenschaftlern aus der Physik, Elektrotechnik, Materialwissenschaft und Medizin bestehende Verbundforschungsprojekt FOR 2093.

Es stehen Fotos zum Download bereit:

http://www.uni-kiel.de/download/pm/2016/2016-226-1.jpg
Bildunterschrift: Wie in einem neuronalen Netzwerk beginnen die verbundenen Oszillatoren miteinander zu kommunizieren… Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2016/2016-226-2.jpg
Bildunterschrift: …und synchronisieren sich nach einer Weile, bis sie wie echte Neuronen alle im gleichen Takt schwingen. Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2016/2016-226-3.jpg
Bildunterschrift: Tom Birkoben, Mirko Hansen und Marina Ignatov (v.l.nr.) haben eine elektrische Schaltung entwickelt, die prinzipiell wie menschliche Nervenzellen aufgebaut ist. Foto: Christian Urban, Universität Kiel

Originalpublikation:
M. Ignatov, M. Hansen, M. Ziegler und H. Kohlstedt (2016): Synchronization of two memristively coupled van der Pol oscillators. Applied Physics Letters
Link:http://dx.doi.org/10.1063/1.4942832

Kontakt:
Professor Dr. Hermann Kohlstedt
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6075
E-Mail: hko@tf.uni-kiel.de

Weitere Informationen:
Verbundforschungsprojekt
„Memristive Bauelemente für neuronale Systeme“ (FOR 2093):
http://www.for2093.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni
Text / Redaktion: Christian Urban

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Bionik-Forschungsvorhaben untersucht mechanische Eigenschaften von Außenskeletten
26.03.2018 | Hochschule Bremen

nachricht Winzige Zell-Implantate funktionieren auch in vivo
19.03.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics