Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gleichtakt als Schlüssel zur Intelligenz

01.07.2016

Kieler Forschungsteam ahmt wichtige Funktionsprinzipien des Gehirns technisch nach

Wie erfasst, verarbeitet und speichert das menschliche Gehirn den ständig einwirkenden Datenstrom? Wie bewältigt es kognitive Aufgaben, die eine komplexe Interaktion zwischen verschiedenen Hirnarealen erfordern und die viel schneller arbeitende Hochleistungsrechner überfordern? Warum kann das Gehirn dies alles mit einem extrem geringen Energieaufwand bewältigen?


Wie in einem neuronalen Netzwerk beginnen die verbundenen Oszillatoren miteinander zu kommunizieren…

Foto: Christian Urban, Universität Kiel


…und synchronisieren sich nach einer Weile, bis sie wie echte Neuronen alle im gleichen Takt schwingen.

Foto: Christian Urban, Universität Kiel

Diese beeindruckende Leistungsfähigkeit des menschlichen Gehirns technisch nachzuvollziehen und seine Arbeitsweise in künstlichen neuronalen Netzwerken umzusetzen, ist das Ziel eines Kieler Forschungsteams um Professor Hermann Kohlstedt, Leiter des Fachbereichs Nanoelektronik an der Technischen Fakultät der Christian-Albrechts-Universität zu Kiel (CAU) und Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten überregionalen Verbundforschungsprojekts „Memristive Bauelemente für neuronale Systeme“ (FOR 2093).

Den Kieler Wissenschaftlerinnen und Wissenschaftlern ist es nun gelungen, zwei grundlegende Arbeitsprinzipien des menschlichen Gehirns, Gedächtnis und Synchronisation, elektronisch nachzubilden. Ihre Ergebnisse publizierten sie vor kurzem in der Fachzeitschrift Applied Physics Letters.

Das menschliche Gehirn ist ein Meister der Energieeffizienz. Seine rund 100 Milliarden Nervenzellen, auch Neuronen genannt, kommen mit einer Leistung von nur rund 20 Watt aus. Um ähnlich komplexe Rechenoperationen durchzuführen, wie sie das Gehirn bewältigt, benötigen moderne Hochleistungsrechner das Vieltausendfache an Energie.

Die Neuronen des Gehirns sind durch Synapsen miteinander verknüpft und bilden ein hochkomplexes Netzwerk. Unter dem Begriff „Lernen“ im neurologischen Sinne versteht man, dass die synaptischen Verbindungen im Gehirn nicht statisch festgelegt sind. Stattdessen passen sie sich ständig auf Grund von Umwelteinflüssen, zum Beispiel Sinneseindrücken, neu an. Damit wird eine lokale Speicherung neuer Gedächtnisinhalte möglich, man spricht von der neurologischen Plastizität des Gehirns.

Neben dieser räumlichen Anpassungsfähigkeit neuronaler Verbindungen existiert ein weiterer wichtiger Baustein für die Informationsverarbeitung im Gehirn: die Synchronisation von Neuronenverbänden. Elektrische Impulse, sogenannte Aktionspotenziale, bilden die Grundeinheit der Informationsverarbeitung im Gehirn. Diese Impulse übermitteln permanent Informationen zwischen den Neuronen, dabei überqueren und beeinflussen sie die synaptischen Verbindungen des Gehirns.

„Im Falle von bewussten Sinneswahrnehmungen verändert sich das räumlich unregelmäßige Auftreten von neuronalen Impulsen plötzlich und zeitlich begrenzt hin zu geordneten Strukturen“, sagt Professor Thorsten Bartsch, Neurologe an der CAU und Mitglied in der Forschungsgruppe. Die zuvor unabhängigen Impulse der Neuronen synchronisieren sich in diesem Fall selbst über weit entfernte Hirnbereiche hinweg.

Dieses synchronisierte „Feuern“ lässt sich auch am lebendigen Menschen mittels Hirnstrommessungen (Elektroenzephalografie, EEG) nachweisen. „Schon seit langem wird diskutiert, ob das menschliche Bewusstsein eng mit dieser Synchronisation der neuronalen Impulse verknüpft ist. Möglicherweise liegt darin der Schlüssel zum besseren Verständnis der Gehirnfunktionen“, so Bartsch weiter.

Die Kieler Wissenschaftlerinnen und Wissenschaftlern haben nun diese beiden Prinzipien der Arbeitsweise des Gehirns, also die Speicherung von Gedächtnisinhalten in den Synapsen und die Synchronität der neuronalen Impulse innerhalb eines elektronischen Schaltkreises nachgebildet. „Dabei haben wir neuartige elektronische Bauelemente verwendet, mit deren Hilfe sich Gedächtnisprozesse nachbilden lassen“, erklärt Kohlstedt.

Diese Bauelemente werden als Memristoren (von englisch „memory“ für Gedächtnis und „resistor“ für Widerstand) bezeichnet. Sie zeichnen sich dadurch aus, dass ihr elektrischer Widerstand von der zuvor geflossenen Ladung abhängt. „Auf diesem Weg lassen sich analog zu den ‚Gedächtniselementen‘ in biologischen Netzwerken unterschiedliche Zustände abspeichern“, ergänzt Dr. Martin Ziegler, Wissenschaftler im Fachbereich Nanoelektronik und Teilprojektleiter in der Forschungsgruppe.

In ihrer elektronischen Schaltung koppelten die Kieler Forschenden nun zwei Oszillatoren miteinander über Memristoren. Oszillatoren sind Schaltungen, die periodische Spannungsimpulse erzeugen – analog zum „Feuern“ der Neuronen im Gehirn. Anfangs verliefen ihre Impulse asynchron, die beiden Oszillatoren waren also zunächst entkoppelt.

Dank der adaptiven „Gedächtniselemente“ synchronisierten sich ihre Schwingungen jedoch nach kurzer Zeit. Die Forschenden konnten so eine elektrische Schaltung mit denselben grundlegenden Eigenschaften ausstatten, die auch ein biologisches neuronales Netzwerk kennzeichnen. Die nun vorliegende Publikation bildet ein erstes Etappenziel für das aus rund zwanzig Wissenschaftlerinnen und Wissenschaftlern aus der Physik, Elektrotechnik, Materialwissenschaft und Medizin bestehende Verbundforschungsprojekt FOR 2093.

Es stehen Fotos zum Download bereit:

http://www.uni-kiel.de/download/pm/2016/2016-226-1.jpg
Bildunterschrift: Wie in einem neuronalen Netzwerk beginnen die verbundenen Oszillatoren miteinander zu kommunizieren… Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2016/2016-226-2.jpg
Bildunterschrift: …und synchronisieren sich nach einer Weile, bis sie wie echte Neuronen alle im gleichen Takt schwingen. Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2016/2016-226-3.jpg
Bildunterschrift: Tom Birkoben, Mirko Hansen und Marina Ignatov (v.l.nr.) haben eine elektrische Schaltung entwickelt, die prinzipiell wie menschliche Nervenzellen aufgebaut ist. Foto: Christian Urban, Universität Kiel

Originalpublikation:
M. Ignatov, M. Hansen, M. Ziegler und H. Kohlstedt (2016): Synchronization of two memristively coupled van der Pol oscillators. Applied Physics Letters
Link:http://dx.doi.org/10.1063/1.4942832

Kontakt:
Professor Dr. Hermann Kohlstedt
Nanoelektronik
Universität Kiel
Tel.: 0431/880 6075
E-Mail: hko@tf.uni-kiel.de

Weitere Informationen:
Verbundforschungsprojekt
„Memristive Bauelemente für neuronale Systeme“ (FOR 2093):
http://www.for2093.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni
Text / Redaktion: Christian Urban

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Nano-CT-Gerät liefert hochauflösende Aufnahmen von winzigem Stummelfüßer-Bein
07.11.2017 | Technische Universität München

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung