Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computersimulationen erklären präzise die Lichtreflexionen der Federn

19.03.2014

Computersimulationen erklären präzise die Lichtreflexionen der Federn

Für Biologen sind Paradiesvögel mit ihrem farbenprächtigen Gefieder und ihren ausgeprägten Balztänzen schon lange ein interessantes Forschungsobjekt.

Nun hat ein Physikerteam die komplexen optischen Eigenschaften der Nacken- und Brustfedern der Art Parotia lawesii am Computer simuliert. Wie die Jülicher Professorin Kristel Michielsen und Wissenschaftler der Universität Groningen in der Zeitschrift PNAS berichten, stimmten die Ergebnisse der Simulation sehr gut mit zuvor gemessenen Streulicht-Mustern und Streulicht-Spektren überein.

Somit konnten die Wissenschaftler von Grund auf die Farbigkeit der Federn erklären, die durch Lichtreflexion an Nanostrukturen in den Federn hervorgerufen wird. Das Computermodell könnte auch bei der Optimierung fotonischer Materialien helfen.

Männliche Blaunacken-Strahlenparadiesvögel (Parotia lawesii) führen auf sonnigen Waldböden, die sie zuvor als Balzarenen hergerichtet haben, ein verblüffendes Tanzritual auf. Während des sogenannten Ballerina-Tanzes zeigen sie den Weibchen, die von Zweigen in der Umgebung herunterblicken, ihre bunten Brustfedern. Diese Federn leuchten während der Tanzbewegungen mal orange, mal grün und mal blau. Die Nackenfedern dagegen präsentieren sich spiegelnd-silbrig. Ansonsten ist das Gefieder pechschwarz.

Die Physiker aus Jülich und dem niederländischen Groningen haben zunächst die optischen Eigenschaften einzelner Brust- und Nackenfedern mit einem besonderen Streulichtmessgerät bestimmt. Die bunten Farbeindrücke werden durch die Reflexion des Sonnenlichtes an winzigen Strukturen in den Federn – genauer: in den Bogen- und Hakenstrahlen der Federäste – der Vögel hervorgerufen.

In den Federästen sind nanometergroße Körnchen aus dem Pigment Melanin, das bei Menschen für Hautfarbe und Hautbräunung verantwortlich ist, zu regelmäßigen Schichten angeordnet. An jeder einzelnen Schicht werden die Sonnenstrahlen zurückgeworfen, wobei sie sich durch Interferenz auf charakteristische Weise verstärken oder auslöschen. Die Melanin-Körnchen in den Brustfedern sind kleiner und weniger dicht gepackt als die in den Nackenfedern. Außerdem haben die Brustfederäste einen Bumerang-förmigen Querschnitt und sind von einem dünnen Film des Proteins Keratin eingehüllt. Diese Faktoren sind die Ursache für das komplexe Reflexionsverhalten und das Farbenspiel der Brustfedern.

Die Bilder und Spektren, die sich aus den Streulichtmessungen ergaben, waren nahezu identisch mit denen, die das Forscherteam aufgrund von Computersimulationen erhielt. "Das bedeutet: Wir können das Zustandekommen des komplexen Reflexionsmusters der Federn vollständig nachvollziehen und somit erklären", freut sich Kristel Michielsen vom Jülich Supercomputer Centre (JSC).

Ausgangspunkt der Computersimulationen sind Gleichungen, mit denen Physiker die Ausbreitung von Lichtwellen durch ein Medium beschreiben. Michielsen hat einen Programmcode entwickelt, mit dem sich diese sogenannten "zeitabhängigen Maxwell-Gleichungen" lösen lassen. Im Falle der Paradiesvögel mussten unter anderem die genaue Form der Federäste sowie die komplexen Lichtbrechungsindizes von Melanin und Keratin in das Programm eingegeben werden. Doch der Programmcode von Michielsen könnte auch interessant sein, um mit seiner Hilfe am Computer nanostrukturierte Materialien mit interessanten optischen Eigenschaften zu entwerfen.

Die simulierten und gemessenen Spektren belegen eine starke Abhängigkeit der Reflexionen vom Winkel des einfallenden Lichtes. Offensichtlich stimulieren die Reflexionen das Sehsystem der weiblichen Paradiesvögel auf sehr spezielle Weise. Denn in den Augen der Paradiesvögel gibt es vier Arten von Fotorezeptoren, die unterschiedlich empfindlich für verschiedene Wellenlängenbereiche des Lichts sind und mit denen die Vögel auch außerhalb des menschlichen Wahrnehmungsbereiches, im Ultravioletten, sehen können.

Während die Lichtreflexionen der Nackenfedern stets alle Fotorezeptoren beim Weibchen aktivieren, werden durch die Reflexion der Brustfedern abhängig vom Lichteinfallswinkel wechselnde Fotorezeptor-Arten erregt. Erst durch den Tanz, bei dem die Federn unter ständig wechselndem Winkel beleuchtet werden, entsteht in den Augen der Weibchen ein Farbenspiel, das einen Werber einzigartig und attraktiv machen kann.

Originalveröffentlichung:

Bodo D. Wilts, Kristel Michielsen, Hans De Raedt, and Doekele G. Stavenga:
Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. PNAS 2014; published ahead of print March 3, 2014 (DOI:10.1073/pnas.1323611111)

Ansprechpartner:

Prof. Kristel Michielsen
Tel. +49 2461 61-2524
k.michielsen@fz-juelich.de

Pressekontakt:

Erhard Zeiss, M.A., Pressereferent
Tel.: +49 2461 61-1841
e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten