Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computersimulationen erklären präzise die Lichtreflexionen der Federn

19.03.2014

Computersimulationen erklären präzise die Lichtreflexionen der Federn

Für Biologen sind Paradiesvögel mit ihrem farbenprächtigen Gefieder und ihren ausgeprägten Balztänzen schon lange ein interessantes Forschungsobjekt.

Nun hat ein Physikerteam die komplexen optischen Eigenschaften der Nacken- und Brustfedern der Art Parotia lawesii am Computer simuliert. Wie die Jülicher Professorin Kristel Michielsen und Wissenschaftler der Universität Groningen in der Zeitschrift PNAS berichten, stimmten die Ergebnisse der Simulation sehr gut mit zuvor gemessenen Streulicht-Mustern und Streulicht-Spektren überein.

Somit konnten die Wissenschaftler von Grund auf die Farbigkeit der Federn erklären, die durch Lichtreflexion an Nanostrukturen in den Federn hervorgerufen wird. Das Computermodell könnte auch bei der Optimierung fotonischer Materialien helfen.

Männliche Blaunacken-Strahlenparadiesvögel (Parotia lawesii) führen auf sonnigen Waldböden, die sie zuvor als Balzarenen hergerichtet haben, ein verblüffendes Tanzritual auf. Während des sogenannten Ballerina-Tanzes zeigen sie den Weibchen, die von Zweigen in der Umgebung herunterblicken, ihre bunten Brustfedern. Diese Federn leuchten während der Tanzbewegungen mal orange, mal grün und mal blau. Die Nackenfedern dagegen präsentieren sich spiegelnd-silbrig. Ansonsten ist das Gefieder pechschwarz.

Die Physiker aus Jülich und dem niederländischen Groningen haben zunächst die optischen Eigenschaften einzelner Brust- und Nackenfedern mit einem besonderen Streulichtmessgerät bestimmt. Die bunten Farbeindrücke werden durch die Reflexion des Sonnenlichtes an winzigen Strukturen in den Federn – genauer: in den Bogen- und Hakenstrahlen der Federäste – der Vögel hervorgerufen.

In den Federästen sind nanometergroße Körnchen aus dem Pigment Melanin, das bei Menschen für Hautfarbe und Hautbräunung verantwortlich ist, zu regelmäßigen Schichten angeordnet. An jeder einzelnen Schicht werden die Sonnenstrahlen zurückgeworfen, wobei sie sich durch Interferenz auf charakteristische Weise verstärken oder auslöschen. Die Melanin-Körnchen in den Brustfedern sind kleiner und weniger dicht gepackt als die in den Nackenfedern. Außerdem haben die Brustfederäste einen Bumerang-förmigen Querschnitt und sind von einem dünnen Film des Proteins Keratin eingehüllt. Diese Faktoren sind die Ursache für das komplexe Reflexionsverhalten und das Farbenspiel der Brustfedern.

Die Bilder und Spektren, die sich aus den Streulichtmessungen ergaben, waren nahezu identisch mit denen, die das Forscherteam aufgrund von Computersimulationen erhielt. "Das bedeutet: Wir können das Zustandekommen des komplexen Reflexionsmusters der Federn vollständig nachvollziehen und somit erklären", freut sich Kristel Michielsen vom Jülich Supercomputer Centre (JSC).

Ausgangspunkt der Computersimulationen sind Gleichungen, mit denen Physiker die Ausbreitung von Lichtwellen durch ein Medium beschreiben. Michielsen hat einen Programmcode entwickelt, mit dem sich diese sogenannten "zeitabhängigen Maxwell-Gleichungen" lösen lassen. Im Falle der Paradiesvögel mussten unter anderem die genaue Form der Federäste sowie die komplexen Lichtbrechungsindizes von Melanin und Keratin in das Programm eingegeben werden. Doch der Programmcode von Michielsen könnte auch interessant sein, um mit seiner Hilfe am Computer nanostrukturierte Materialien mit interessanten optischen Eigenschaften zu entwerfen.

Die simulierten und gemessenen Spektren belegen eine starke Abhängigkeit der Reflexionen vom Winkel des einfallenden Lichtes. Offensichtlich stimulieren die Reflexionen das Sehsystem der weiblichen Paradiesvögel auf sehr spezielle Weise. Denn in den Augen der Paradiesvögel gibt es vier Arten von Fotorezeptoren, die unterschiedlich empfindlich für verschiedene Wellenlängenbereiche des Lichts sind und mit denen die Vögel auch außerhalb des menschlichen Wahrnehmungsbereiches, im Ultravioletten, sehen können.

Während die Lichtreflexionen der Nackenfedern stets alle Fotorezeptoren beim Weibchen aktivieren, werden durch die Reflexion der Brustfedern abhängig vom Lichteinfallswinkel wechselnde Fotorezeptor-Arten erregt. Erst durch den Tanz, bei dem die Federn unter ständig wechselndem Winkel beleuchtet werden, entsteht in den Augen der Weibchen ein Farbenspiel, das einen Werber einzigartig und attraktiv machen kann.

Originalveröffentlichung:

Bodo D. Wilts, Kristel Michielsen, Hans De Raedt, and Doekele G. Stavenga:
Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. PNAS 2014; published ahead of print March 3, 2014 (DOI:10.1073/pnas.1323611111)

Ansprechpartner:

Prof. Kristel Michielsen
Tel. +49 2461 61-2524
k.michielsen@fz-juelich.de

Pressekontakt:

Erhard Zeiss, M.A., Pressereferent
Tel.: +49 2461 61-1841
e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie