Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Der Mensch nimmt den dreidimensionalen Raum verzerrt wahr"

26.11.2001


Die Göttinger Physikerin und Psychologin Dr. Julia Trommershäuser ist in das Emmy-Noether-Pogramm der Deutschen Forschungsgemeinschaft (DFG) aufgenommen worden. In ihren interdisziplinär ausgerichteten Forschungsarbeiten untersucht Dr. Trommershäuser, die derzeit am Department of Psychology an der New York University in den USA arbeitet, die Struktur des subjektiv wahrgenommenen visuellen Raumes. Die Wissenschaftlerin möchte dabei klären, unter welchen Bedingungen Verzerrungen in der Wahrnehmung des Raumes entstehen.

 "Der Mensch nimmt den dreidimensionalen Raum verzerrt wahr: Die subjektive Wahrnehmung deckt sich nicht mit dem physikalischen Raum", sagt Dr. Julia Trommershäuser. Die Göttinger Physikerin und Psychologin, die diese Unstimmigkeit zwischen Realität und Wahrnehmung des Räumlichen zu ihrem Forschungsthema gemacht hat, ist jetzt in das Emmy-Noether-Pogramm der Deutschen Forschungsgemeinschaft (DFG) aufgenommen worden. Teil der insgesamt sechsjährigen Förderung für besonders qualifizierten wissenschaftlichen Nachwuchs ist die Finanzierung eines Auslandsaufenthaltes. So forscht Dr. Trommershäuser derzeit am Department of Psychology an der New York University in den USA.

Mit ihren interdisziplinär ausgerichteten Forschungsarbeiten, die mathematisch-theoretische Ansätze, Neurowissenschaften und kognitive Psychologie verbinden, möchte Dr. Trommershäuser die Struktur des subjektiv wahrgenommenen visuellen Raumes untersuchen und dabei klären, unter welchen Bedingungen Verzerrungen in der Wahrnehmung des Raumes entstehen. Die Wissenschaftlerin geht davon aus, daß nicht nur die visuelle Wahrnehmung des Raumes verzerrt erfolgt, sondern auch situationsspezifische Faktoren wie der Kontext und die Aufgabenanforderung die Gedächtnisrepräsentation des Raumes verändern. Dabei geht es zum Beispiel um die Frage, wie sich die Wahrnehmung von Entfernungen verändert, wenn Menschen nicht mehr nur zu Objekten hinsehen, sondern auch nach ihnen greifen. "Ich werde Experimente durchführen, um verschiedene Verzerrungsfaktoren zu identifizieren", so die Wissenschaftlerin, die gleichzeitig an einem mathematisch-theoretischen Rahmen für ihre Untersuchungen arbeitet. Damit soll es unter anderem möglich sein, Vorhersagen in Bezug auf Fehler bei Entfernungseinschätzungen zu treffen.

Julia Trommershäuser studierte in Gießen und Göttingen Physik und schloss im Jahr 2000 ihre Promotion mit Auszeichnung ab. Darin entwickelte sie unter Betreuung von Leibnizpreisträgerin Prof. Dr. Annette Zippelius mathematische Modelle zur synaptischen Übertragung von Aktivität im Zentralen Nervensystem und arbeitete mit der Arbeitsgruppe des Nobelpreisträgers Prof. Dr. Erwin Neher am Max-Planck-Institut für biophysikalische Chemie (Göttingen) und dem Zentrum für Physiologie der Universität Göttingen zusammen. Das parallel zusätzlich aufgenommene Psychologiestudium beendete sie im Oktober 2001 mit einer Diplomarbeit zu "Fehlern im visuell-räumlichen Arbeitsgedächtnis".

Mit ihrem nach der bedeutenden Göttinger Mathematikerin Emmy Noether benannten Förderprogramm will die Deutsche Forschungsgemeinschaft insbesondere die Stellung von Frauen in wissenschaftlichen Führungspositionen verbessern. In diesem Herbst wurden 18 neue Bewilligungen ausgesprochen. Die Zahl der zur Zeit im Emmy-Noether-Programm geförderten Nachwuchswissenschaftlerinnen und -wissenschaftler stieg damit auf 277.

Kontaktadresse:
Dr. Julia Trommershäuser
E-Mail: trommer@cns.nyu.edu

Marietta Fuhrmann-Koch | idw

Weitere Berichte zu: Wahrnehmung

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics