Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunftsweisende Ergebnisse im Bereich der Optoelektronik

19.06.2002


Auf Galliumnitrid (GaN) basierende optoelektronische Bauelemente zeigen Lichtemission vom ultravioletten Spektralbereich bis ins Blaue. Blauvioletten Lasern wird im Markt der optischen Speicherung eine zukunftsträchtige Entwicklung vorausgesagt. Besonders bei den Segmenten Computerspeicher (DVD, Blue-ray Disc) sowie der Speicherung von Videos oder Videospielen auf DVD und bei Minidisks (z. B. Speicherung von Fotos oder Videoaufnahmen) können die blauen Laser ihre Vorteile ausspielen. Blaue Leuchtdioden werden bereits eingesetzt, zum Beispiel für tageslichtfähige Großdisplays, als Instrumentenbeleuchtung in Automobilen oder zur Kennzeichnung von Wegen oder Notausgängen.
Mit ultraviolett strahlenden Leuchtdioden (UV-LED) kann ein sehr reines weißes Licht erzeugt werden. Ähnlich wie bei der Leuchtstofflampe werden die UV-Strahlen mit Fluoreszenzstoffen konvertiert. Durch ihre Eigenschaften wie hohe Brillianz, niedrige Betriebsspannung, flache Bauform und geringe Wärmeentwicklung eignen sie sich hervorragend als Hinterleuchtung für Flüssigkristall-Displays. Auch als reine UV-Strahler können sie eingesetzt werden: dort, wo sie mit ihren energiereichen Photonen beispielsweise Kunststoffe härten (Zahnfüllungen, Druckfarben etc.) oder Flüssigkeiten entkeimen.

Aus diesen Gründen fördert das Bundesministerium für Bildung und Forschung (BMBF) seit 1996 die Forschung auf dem Gebiet der GaN-Halbleiter.
Im Rahmen der bereits abgeschlossenen Vorhaben wurden blau leuchtende LEDs und der erste in Europa hergestellte blaue "continuous-wave" Laser realisiert (im März 2001 von Osram OS vorgestellt). In einem weiteren Vorhaben: "Vollfarbtaugliche LC-Displaybeleuchtung für die multimediale Mobilkommunikation" wurden Weißlichtquellen entwickelt. In dem zur Zeit laufenden Projekt "Neue Wege zur Speicherung und Visualisierung von Informationen" sollen in Zusammenarbeit von Osram OS, der Universitäten Ulm und Braunschweig sowie des Fraunhofer-Instituts Angewandte Festkörperphysik leistungsstarke GaN-Laser entwickelt werden. Neben einem tieferen Verständnis der physikalischen Grundlagen soll die Technologiebasis für weitere Produktentwicklungen gelegt werden. Erste Erfolge sind bereits zu verzeichnen: die Lebensdauer bei 1 mW optischer Ausgangsleistung und bei Raumtemperatur ist seit Projektstart schrittweise von 2 Minuten auf mehr als 35 Stunden gestiegen.

Eine wesentliche Verbesserung der Eigenschaften GaN-basierender Bauelemente wird erwartet, wenn GaN-Substrate guter Qualität vorliegen. Daher wird in Ergänzung zu den Bauelemententwicklungen die vielversprechende Hydrid-Gasphasenepitaxie erforscht. Damit sollen große freitragende GaN-Schichten von etwa 200 µm Dicke abgeschieden werden, die dann als Trägermaterial für Bauelemente dienen. Diese Entwicklung wird in Zusammenarbeit von Aixtron mit Osram OS und anderen Forschergruppen durchgeführt.

Hierzu findet am 27. Juni im Deutschen Zentrum für Luft- und Raumfahrt in Köln-Porz ein Symposium statt, in dem die Ergebnisse der oben genannten BMBF-Projekte vorgestellt und diskutiert werden.

Ansprechpartner:

Dr. Ralph Dieter
Projektträger des BMBF für Informationstechnik
Deutsches Zentrum für Luft- und Raumfahrt e. V.
Linder Höhe
51147 Köln

Tel.: 02203 - 601 3350
E-Mail: ralph.dieter@dlr.de

Dipl. Met. Birgit Drüen | idw
Weitere Informationen:
http://www.dlr.de/IT/veranstaltungen_it.html

Weitere Berichte zu: BMBF Bauelement Osram Speicherung

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics