Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Spinstrompulse unter Kontrolle gebracht

08.04.2013
Auf dem Weg zur Terahertz-Datenverarbeitung

Ein internationales Forscherteam hat eine Möglichkeit gefunden, extrem kurze und schnelle Pulse aus Spinströmen kontrolliert zu erzeugen. Mithilfe solcher Pulse im Terahertz-Frequenzbereich könnten die Computer von übermorgen Daten schneller und energieeffizienter verarbeiten als heutige Rechner. Die Forschungsergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift „Nature Nanotechnology“ nachzulesen (DOI: 10.1038/NNANO.2013.43).


Skizze: Laserpulse führen einem magnetischen Eisenfilm (grün) Energie zu. Dies erzeugt Spinstrompulse in der zweiten, nichtmagnetischen Schicht des Systems (blau), weil Elektronenspins in Abhängigkeit von ihrer Orientierung (orange Pfeile: „Up“, blaue Pfeile: „Down“) unterschiedlich häufig in diese Schicht übertreten. Forschungszentrum Jülich

Unsere Anforderung an die Rechengeschwindigkeit von Computern steigt stetig, ebenso der weltweite Energieverbrauch durch die Nutzung von Informations- und Kommunikationstechnologien. Einen vielversprechenden Ansatz, langfristig schnellere und energieeffizientere Rechner zu verwirklichen, könnte die Spintronik bieten. Sie sieht elektronische Bauteile vor, bei denen die Eigenrotation (der „Spin“) von Elektronen zusätzlich zu ihrer Ladung zur Informationsverarbeitung genutzt wird.

Dabei ist es erforderlich, Spininformation in kürzester Zeit innerhalb einer Recheneinheit transportieren zu können. Dies geschieht in kleinen Paketen, Pulsen von Strömen mit nur einer Spinsorte. Dazu ist es unter anderem nötig, diese Spinströme mit einer exakt kontrollierten Frequenz und Geschwindigkeit zu erzeugen.

Wissenschaftlern vom Forschungszentrum Jülich, dem Fritz-Haber-Institut Berlin, der Universität Uppsala, der Georg-August-Universität Göttingen sowie dem Helmholtz-Zentrum Berlin ist dies durch die gezielte Kombination von magnetischen und nichtmagnetischen Metallen gelungen. Die von ihnen erzeugten Spinstrompulse erreichten extrem schnelle Terahertz-Frequenzen (1 THz = 1012 Hz = 1012 Vorgänge pro Sekunde).

Das internationale Wissenschaftlerteam belichtete ein nur wenige Nanometer dickes Schichtsystem aus Metallen mit 20 Femtosekunden kurzen Laserpulsen – das entspricht einer 20 Billiardstel Sekunde. Die Lichtblitze führen den Elektronen in einer Eisenschicht Energie zu, wodurch ein Teil der Spins kurzzeitig in die Nachbarschicht aus Gold oder Ruthenium wechselt – ein Spinstrompuls entsteht.

„Die Wahl ist auf Gold und Ruthenium gefallen, weil sich Elektronen in diesen beiden Materialien unterschiedlich gut bewegen können und wir deshalb unterschiedliche Spinstrompulse erwartet haben“, erläutert Dr. Frank Freimuth, Mitglied der „Topologischen-Nanoelektronik-Gruppe“ am Jülicher Peter Grünberg Institut/Institute for Advanced Simulation. Der theoretische Physiker hat gemeinsam mit seinen Kollegen aus Jülich und Uppsala dazu beigetragen, die experimentellen Messergebnisse quantitativ verständlich zu machen.

Die Messungen basieren darauf, dass sich die Spinstrompulse mithilfe eines komplexen physikalischen Phänomens, des inversen Spin-Hall-Effekts, in herkömmliche elektrische Strompulse umwandeln lassen, die gemessen werden können. Um daraus die Spinstrompulse zu errechnen, nutzten die Forscher unter anderem ein in Jülich entwickeltes Computerprogramm. Die Daten zeigten wie erwartet kürzere Terahertz-Pulse in der Goldschicht, in der die Elektronen eine höhere Beweglichkeit als im Ruthenium haben.

„Unsere Ergebnisse zeigen einen gangbaren Weg auf, um ultraschnelle Bauteile mittels Spintronik zu entwickeln“, freut sich Prof. Yuriy Mokrousov, Leiter der „Topologischen-Nanoelektronik-Gruppe“. Die Gruppe plant nun, die Materialauswahl weiter zu verfeinern, um aus den Spinstrompulsen noch stärkere Terahertz-Signale zu erzeugen. Außerdem planen die Forscher, die Physik der Spinströme bei ultrahohen Frequenzen weiter zu erforschen mit dem Ziel, den Verlauf der Terahertz-Signale besser einstellen zu können.

Originalveröffentlichung:
Terahertz spin current pulses controlled by magnetic heterostructures;
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M.Wolf, I. Radu, P. M. Oppeneer and M. Münzenberg;
Nature Nanotechnology, published online: 31 March 2013; DOI: 10.1038/NNANO.2013.43
Abstract: http://www.nature.com/nnano/journal/v8/n4/abs/nnano.2013.43.html

Weitere Informationen:
Zur Pressemitteilung:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2013/13-04-08NNano_Spinstroeme.html

Institutsbereich „Quanten-Theorie der Materialien“ (PGI-1/IAS-1): http://www.fz-juelich.de/pgi/pgi-1/DE/Home/

Universität Uppsala, Department of Physics and Astronomy: http://katalog.uu.se/orgInfo/?orgId=X208

Pressemitteilung der Universität Göttingen „Neue Methode zur Speicherung ultrakurzer Strompulse entwickelt“ vom 1. April 2013:

http://www.uni-goettingen.de/de/3240.html?cid=4432

Fritz-Haber-Institut Berlin:
http://www.fhi-berlin.mpg.de/pc/KAMPFRATH/welcome.html
Pressemitteilung des Helmholtz-Zentrums Berlin vom 1. April 2013 „Ultraschnelle Spin-Manipulation bei Terahertz-Frequenzen“: http://www.helmholtz-berlin.de/forschung/grossgeraete/mi-synchrotron-radiation

Ansprechpartner:
Prof. Yuriy Mokrousov, Quanten-Theorie der Materialien (PGI-1/IAS-1), Forschungszentrum Jülich
Tel. 02461 61-4434
y.mokrousov@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich
Tel. 02461 61-6048
a.wenzik@fz-juelich.de

Das Forschungszentrum Jülich...
...betreibt interdisziplinäre Spitzenforschung und stellt sich drängenden Fragen der Gegenwart, vor allem zur künftigen Energieversorgung. Mit seinen Kompetenzen in der Materialforschung und der Simulation und seiner Expertise in der Physik, der Nano- und Informationstechnologie sowie den Biowissenschaften und der Hirnforschung entwickelt es die Grundlagen für zukünftige Schlüsseltechnologien. Das Forschungszentrum leistet Beiträge zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Energie und Umwelt, Gesundheit sowie Informationstechnologie. Mit fast 5000 Mitarbeiterinnen und Mitarbeitern gehört es als Mitglied der Helmholtz-Gemeinschaft zu den großen interdisziplinären Forschungszentren Europas.

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Plattformübergreifende Symbiose von intelligenten Objekten im »Internet of Things« (IoT)
09.12.2016 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

nachricht Von Fußgängern und Fahrzeugen: Uni Ulm und DLR sammeln gemeinsam Daten für das automatisierte Fahren
09.12.2016 | Universität Ulm

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie