Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Forschergruppe entdeckt molekulares Quantenbit mit langer Kohärenzzeit

21.10.2014

Langlebige Qubits bei Zimmertemperatur

Von effizienteren Datenbankabfragen bis zum Knacken von heute noch sicheren Verschlüsselungscodes: Die Entwicklung eines konkurrenzfähigen Quantencomputers würde ein neues digitales Zeitalter einläuten.


Struktur des Qubits (oben rechts) und dreidimensionale Darstellung der Kohärenzzerfallskurven.

Universität Stuttgart

Bisher konzentriert sich die Forschung noch auf die Suche nach den Recheneinheiten, den sogenannten Quantenbits (kurz: Qubits). Diese kennen im Gegensatz zu normalen Bits nicht nur die Zustände 0 und 1, sondern auch beliebige Überlagerungen dieser beiden Zustände.

Damit man mit Qubits sinnvoll rechnen kann, müssen diese Überlagerungszustände allerdings eine lange Kohärenzzeit aufweisen, das heißt, von ausreichender Dauer sein.

Die Arbeitsgruppe von Prof. Joris van Slageren vom Institut für Physikalische Chemie der Universität Stuttgart veröffentlichte nun in der Fachzeitschrift Nature Communications Ergebnisse zu einer Koordinationsverbindung mit außergewöhnlich langen Kohärenzzeiten, die zudem über einen sehr großen Temperaturbereich funktioniert.

Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5:5304 doi: 10.1038/ncomms6304 (2014).

Für die Implementierung eines Quantenbits wurden bisher verschiedene physikalische Systeme vorgeschlagen. Besonders vielversprechende Beispiele sind dabei Elektronenspins in magnetischen Molekülen. Koordinationsverbindungen, bestehend aus einem Metallion mit organischen Gruppen (Liganden), bieten über einfache chemische Manipulationen nahezu grenzenlosen Spielraum für maßgeschneiderte physikalische Eigenschaften. Bekannt ist durch die Forschungen bereits, dass die Lebensdauer des Überlagerungszustandes (Superposition) durch benachbarte Kernspins erheblich verkürzt wird, da diese ein Störfeld verursachen.

Aufbauend auf diesem Wissen haben die Stuttgarter Physikochemiker eine Verbindung identifiziert, die besonders wenige Kernspins in der direkten Umgebung des Elektronenspins aufweist und somit großes Potential für lange Kohärenzzeiten hat.

Die Verbindung besteht aus einem zentralen Kupferion, eingebettet in einer organischen Hülle mit wenigen kernspintragenden Elementen. Die Ligandenhülle ist zudem sehr steif und flach und die Verbindung bildet im Festkörper besonders stabile, säulenförmige Stapel.

Die Stuttgarter Messungen zeigten, dass diese Design-Kriterien tatsächlich zu außergewöhnlich langen Kohärenzzeiten führen. Bei tiefen Temperaturen um sieben Kelvin konnte eine Lebensdauer von von 68 Mikrosekunden festgestellt werden. Dies übersteigt die bisherigen Werte molekularer Qubits, die im Bereich von wenigen Mikrosekunden lagen, um ein Vielfaches.

Zudem konnte die Kohärenz über einen außergewöhnlich breiten Temperaturbereich festgestellt werden: Während molekulare Qubits bis dato nur bei extremen Minusgraden Kohärenz zeigen, funktioniert das Stuttgarter Design auch bei Zimmertemperatur. Damit rückt die Realisierung von energieeffizienten Quantencomputern mit niedrigen Betriebskosten näher.

Die nächste Hürde auf dem Weg zu einer Anwendung in der Datenverarbeitung ist die strukturierte Abscheidung der Verbindung auf Oberflächen. Mit dieser Frage werden sich die Stuttgarter Forscher im nächsten Schritt befassen.

„Für den Bau eines Quantencomputers gilt es nicht nur, Verbindungen mit langen Kohärenzzeiten zu finden, sondern diese auch selektiv ansprechen zu können“, sagt die Diplom-Chemikerin Katharina Bader. Die Arbeit ist Teil ihrer vom Fonds der Chemischen Industrie geförderten Promotion. Die Messungen wurden in Kooperation mit der Universität Frankfurt durchgeführt und wurden finanziell von der Deutschen Forschungsgemeinschaft und dem Center for Integrated Quantum Science and Technology (Stuttgart/Ulm) unterstützt

Weitere Informationen:
Prof. Joris van Slageren, Universität Stuttgart, Institut für Physikalische Chemie, Tel. 0711/685-64380,
E-Mail: slageren (at) ipc.uni-stuttgart.de
Katharina Bader, Universität Stuttgart, Institut für Physikalische Chemie, Tel. 0711/685-64414,
E-Mail: k.bader (at) ipc.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Volle Konzentration am Steuer
25.11.2016 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Warum Reibung von der Zahl der Schichten abhängt
24.11.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie