Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stromsparende Minicomputer für das „Internet der Dinge“

29.01.2016

Das „Internet der Dinge“ wächst rapide. Ob Handy, Waschmaschine oder die Milchtüte im Kühlschrank – hiermit verbundene Minicomputer sollen Informationen verarbeiten und Daten empfangen oder senden können. Dazu wird Strom benötigt. Viel weniger Energie als die gebräuchlichen Feldeffekt-Transistoren verbrauchen Transistoren, die Informationen mit nur einem einzigen Elektron schalten können. Jedoch funktionieren diese noch nicht bei Raumtemperatur. Zudem sind sie nicht passfähig zu den gängigen Herstellungsprozessen in der Mikroelektronik. Das wollen Wissenschaftler im EU-Projekt „Ions4Set“ ändern. Es startet am 1. Februar und wird vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) koordiniert.

„Milliarden kleiner Computer werden in Zukunft über das Internet oder auch lokal miteinander kommunizieren. Ein großer Hemmschuh ist derzeit aber noch der hohe Stromverbrauch“, so der Projektkoordinator Dr. Johannes von Borany vom HZDR.


Das Ionenmikroskop produziert einen ultrafein gebündelten Strahl aus Neon-Ionen. Damit lassen sich dünne Schichtstapel so modifizieren, dass sich nach einem Heizschritt Silizium-Quantenpunkte bilden.

HZDR / Oliver Killig

„Prinzipiell gibt es hier zwei Wege: Entweder man verbessert die Batterien oder man entwickelt Computerchips, die deutlich weniger Energie benötigen.“ So ist seit Jahren bekannt, dass Einzelelektronen-Transistoren eine stromsparende Alternative zu den üblichen Feldeffekt-Transistoren (FET) darstellen.

Allerdings funktionieren diese derzeit nur bei tiefen Temperaturen und sind zudem auch nicht mit der CMOS-Technologie kompatibel. Die Computerchips, die all unsere Laptops und Smartphones steuern, basieren auf dieser von allen großen Mikroelektronik-Firmen genutzten Technologie.

Ein Einzelelektronen-Transistor (Single Electron Transistor = SET) schaltet Strom durch ein einziges Elektron. Zentraler Bestandteil des neuartigen SET ist ein Quantenpunkt, bestehend aus einigen hundert Silizium-Atomen, der in einer isolierenden Schicht eingebettet ist. Diese wiederum befindet sich zwischen zwei leitfähigen Schichten.

Damit ein SET bei Raumtemperatur funktioniert, muss der Quantenpunkt kleiner als fünf Nanometer sein (1 Nanometer = 1 Millionstel Millimeter). Und eine zweite Anforderung muss erfüllt sein, sonst können die Elektronen den Transistor nicht passieren: Der Abstand vom Quantenpunkt zu den leitfähigen Schichten darf nicht mehr als zwei bis drei Nanometer betragen. Solche Anforderungen konnte die Nano-Elektronik bisher nicht umsetzen.

Selbstorganisation in Nano-Säulen

„Unser Transistor hat die Form einer Nano-Säule. Außerdem haben wir einen Mechanismus entdeckt, der dafür sorgt, dass sich die erforderlichen Quantenpunkte quasi wie von selbst bilden“, sagt Dr. Karl-Heinz Heinig, Initiator des neuen EU-Projekts.

„Wir stellen rund 20 Nanometer schlanke Säulen aus Silizium her, in die eine sechs Nanometer dünne Scheibe aus dem Isolator Siliziumdioxid eingebettet ist. Durch den Beschuss der Nano-Säule mit schnellen geladenen Teilchen werden Silizium-Atome in den Isolator hineingestoßen. Erhitzt man die Strukturen anschließend stark, finden sich die Atome in der Mitte der isolierenden Scheibe zu einem einzelnen Silizium-Quantenpunkt zusammen.“

Um milliardenfach wiederholbar und zuverlässig SET-Bauteile aus Nano-Säulen herstellen zu können, haben sich im Projekt führende europäische Forschungseinrichtungen sowie die Großen der Halbleiterbranche – Globalfoundries, X-FAB, STMicroelectronics – zusammengetan.

Demonstrator mit zwei Transistoren: SET und FET ergänzen sich

Während CEA-Leti, ein französisches Forschungsinstitut für Mikroelektronik, mit der notwendigen Präzision die Nano-Säulen herstellt, soll das spanische Mikroelektronik-Zentrum in Barcelona (CSIC) den Demonstrator bauen, der den Abschluss des vierjährigen EU-Projekts bildet. Allerdings ist die Aufgabe, die sich die Forscher gestellt haben, eigentlich noch viel komplizierter.

Der Demonstrator darf nicht lediglich aus Einzelelektronen-Transistoren (SET) bestehen, die bei Raumtemperatur die logischen Operationen ausführen. Daneben sind noch klassische Feldeffekt-Transistoren (FET) erforderlich, ebenfalls in Form von Nano-Säulen.

Der Grund: Die stromsparenden Einzelelektronen-Transistoren verfügen über zu wenig Energie, um mit der Welt außerhalb des eigenen Chips zu interagieren. Deshalb muss der Chip, der den Siegeszug des „Internet of Things“ erleichtern soll, neben vielen SET-Säulen einige FET-Säulen enthalten, damit diese die Ergebnisse der SET-Operationen an andere Chips oder Geräte weitergeben können

Kick-off-Treffen für „Ions4Set“ vom 1. bis 3. Februar am HZDR

Vom 1. bis 3. Februar 2016 findet am Helmholtz-Zentrum Dresden-Rossendorf das erste Treffen aller am EU-Projekt beteiligten Partner statt. Neben HZDR, CEA-Leti und CSIC gehören dazu das Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen, das Institut für Mikroelektronik und Mikrosysteme IMM des italienischen CNR und die Universität Helsinki in Finnland. Die Fördersumme beträgt vier Millionen Euro.

„Wir sind überzeugt, dass wir das neue Projekt zum Erfolg führen werden“, ist Dr. Heinig vom HZDR optimistisch. „Einerseits bauen wir auf Erkenntnissen aus einem vorigen EU-Projekt mit Computerchip-Produzenten auf, andererseits konnten wir die führenden Forschungseinrichtungen auf diesem Gebiet als Partner gewinnen.“

Und nicht zuletzt kommen die Stärken des Ionenstrahlzentrums am HZDR zum Tragen, wenn es um die zentralen Prozessschritte für die Herstellung von Einzelelektronen-Transistoren geht: eine langjährige Erfahrung in der Materialforschung, eine breite Palette von Ionenbeschleunigern sowie modernste physikalische Verfahren der Analytik.

„Unsere Herstellungstechnik kann nach erfolgreichem Abschluss des Projekts von der Mikroelektronik-Industrie sehr einfach übernommen werden, da die Lösung die volle Kompatibilität mit der CMOS-Technologie gewährleistet“, betont Dr. Heinig.

Weitere Informationen:
Dr. Johannes von Borany / Dr. Karl-Heinz Heinig
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3378 / -3288
E-Mail: j.v.borany@hzdr.de / k.h.heinig@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin & Leitung HZDR-Kommunikation
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden |

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Störungsfreie Kommunikation für die Fabriken von morgen
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen