Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stromsparende Minicomputer für das „Internet der Dinge“

29.01.2016

Das „Internet der Dinge“ wächst rapide. Ob Handy, Waschmaschine oder die Milchtüte im Kühlschrank – hiermit verbundene Minicomputer sollen Informationen verarbeiten und Daten empfangen oder senden können. Dazu wird Strom benötigt. Viel weniger Energie als die gebräuchlichen Feldeffekt-Transistoren verbrauchen Transistoren, die Informationen mit nur einem einzigen Elektron schalten können. Jedoch funktionieren diese noch nicht bei Raumtemperatur. Zudem sind sie nicht passfähig zu den gängigen Herstellungsprozessen in der Mikroelektronik. Das wollen Wissenschaftler im EU-Projekt „Ions4Set“ ändern. Es startet am 1. Februar und wird vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) koordiniert.

„Milliarden kleiner Computer werden in Zukunft über das Internet oder auch lokal miteinander kommunizieren. Ein großer Hemmschuh ist derzeit aber noch der hohe Stromverbrauch“, so der Projektkoordinator Dr. Johannes von Borany vom HZDR.


Das Ionenmikroskop produziert einen ultrafein gebündelten Strahl aus Neon-Ionen. Damit lassen sich dünne Schichtstapel so modifizieren, dass sich nach einem Heizschritt Silizium-Quantenpunkte bilden.

HZDR / Oliver Killig

„Prinzipiell gibt es hier zwei Wege: Entweder man verbessert die Batterien oder man entwickelt Computerchips, die deutlich weniger Energie benötigen.“ So ist seit Jahren bekannt, dass Einzelelektronen-Transistoren eine stromsparende Alternative zu den üblichen Feldeffekt-Transistoren (FET) darstellen.

Allerdings funktionieren diese derzeit nur bei tiefen Temperaturen und sind zudem auch nicht mit der CMOS-Technologie kompatibel. Die Computerchips, die all unsere Laptops und Smartphones steuern, basieren auf dieser von allen großen Mikroelektronik-Firmen genutzten Technologie.

Ein Einzelelektronen-Transistor (Single Electron Transistor = SET) schaltet Strom durch ein einziges Elektron. Zentraler Bestandteil des neuartigen SET ist ein Quantenpunkt, bestehend aus einigen hundert Silizium-Atomen, der in einer isolierenden Schicht eingebettet ist. Diese wiederum befindet sich zwischen zwei leitfähigen Schichten.

Damit ein SET bei Raumtemperatur funktioniert, muss der Quantenpunkt kleiner als fünf Nanometer sein (1 Nanometer = 1 Millionstel Millimeter). Und eine zweite Anforderung muss erfüllt sein, sonst können die Elektronen den Transistor nicht passieren: Der Abstand vom Quantenpunkt zu den leitfähigen Schichten darf nicht mehr als zwei bis drei Nanometer betragen. Solche Anforderungen konnte die Nano-Elektronik bisher nicht umsetzen.

Selbstorganisation in Nano-Säulen

„Unser Transistor hat die Form einer Nano-Säule. Außerdem haben wir einen Mechanismus entdeckt, der dafür sorgt, dass sich die erforderlichen Quantenpunkte quasi wie von selbst bilden“, sagt Dr. Karl-Heinz Heinig, Initiator des neuen EU-Projekts.

„Wir stellen rund 20 Nanometer schlanke Säulen aus Silizium her, in die eine sechs Nanometer dünne Scheibe aus dem Isolator Siliziumdioxid eingebettet ist. Durch den Beschuss der Nano-Säule mit schnellen geladenen Teilchen werden Silizium-Atome in den Isolator hineingestoßen. Erhitzt man die Strukturen anschließend stark, finden sich die Atome in der Mitte der isolierenden Scheibe zu einem einzelnen Silizium-Quantenpunkt zusammen.“

Um milliardenfach wiederholbar und zuverlässig SET-Bauteile aus Nano-Säulen herstellen zu können, haben sich im Projekt führende europäische Forschungseinrichtungen sowie die Großen der Halbleiterbranche – Globalfoundries, X-FAB, STMicroelectronics – zusammengetan.

Demonstrator mit zwei Transistoren: SET und FET ergänzen sich

Während CEA-Leti, ein französisches Forschungsinstitut für Mikroelektronik, mit der notwendigen Präzision die Nano-Säulen herstellt, soll das spanische Mikroelektronik-Zentrum in Barcelona (CSIC) den Demonstrator bauen, der den Abschluss des vierjährigen EU-Projekts bildet. Allerdings ist die Aufgabe, die sich die Forscher gestellt haben, eigentlich noch viel komplizierter.

Der Demonstrator darf nicht lediglich aus Einzelelektronen-Transistoren (SET) bestehen, die bei Raumtemperatur die logischen Operationen ausführen. Daneben sind noch klassische Feldeffekt-Transistoren (FET) erforderlich, ebenfalls in Form von Nano-Säulen.

Der Grund: Die stromsparenden Einzelelektronen-Transistoren verfügen über zu wenig Energie, um mit der Welt außerhalb des eigenen Chips zu interagieren. Deshalb muss der Chip, der den Siegeszug des „Internet of Things“ erleichtern soll, neben vielen SET-Säulen einige FET-Säulen enthalten, damit diese die Ergebnisse der SET-Operationen an andere Chips oder Geräte weitergeben können

Kick-off-Treffen für „Ions4Set“ vom 1. bis 3. Februar am HZDR

Vom 1. bis 3. Februar 2016 findet am Helmholtz-Zentrum Dresden-Rossendorf das erste Treffen aller am EU-Projekt beteiligten Partner statt. Neben HZDR, CEA-Leti und CSIC gehören dazu das Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen, das Institut für Mikroelektronik und Mikrosysteme IMM des italienischen CNR und die Universität Helsinki in Finnland. Die Fördersumme beträgt vier Millionen Euro.

„Wir sind überzeugt, dass wir das neue Projekt zum Erfolg führen werden“, ist Dr. Heinig vom HZDR optimistisch. „Einerseits bauen wir auf Erkenntnissen aus einem vorigen EU-Projekt mit Computerchip-Produzenten auf, andererseits konnten wir die führenden Forschungseinrichtungen auf diesem Gebiet als Partner gewinnen.“

Und nicht zuletzt kommen die Stärken des Ionenstrahlzentrums am HZDR zum Tragen, wenn es um die zentralen Prozessschritte für die Herstellung von Einzelelektronen-Transistoren geht: eine langjährige Erfahrung in der Materialforschung, eine breite Palette von Ionenbeschleunigern sowie modernste physikalische Verfahren der Analytik.

„Unsere Herstellungstechnik kann nach erfolgreichem Abschluss des Projekts von der Mikroelektronik-Industrie sehr einfach übernommen werden, da die Lösung die volle Kompatibilität mit der CMOS-Technologie gewährleistet“, betont Dr. Heinig.

Weitere Informationen:
Dr. Johannes von Borany / Dr. Karl-Heinz Heinig
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-3378 / -3288
E-Mail: j.v.borany@hzdr.de / k.h.heinig@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin & Leitung HZDR-Kommunikation
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden |

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Computer mit Köpfchen
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pepper, der neue Kollege im Altenheim
17.08.2017 | Universität Siegen

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie