Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Routenplaner für den Mars

26.01.2016

Wenn sich Erkundungsroboter auf dem Mars auf die Suche nach Leben begeben, sollten sie ihren eigenen Standort und den ihrer Begleiter möglichst exakt kennen. Was sich nach einer einfachen Aufgabe anhört, ist in der Realität höchst kompliziert. Informatiker der Uni Würzburg arbeiten an einer Lösung.

Wenn es denn jemals tatsächlich Spuren von Leben auf dem Mars gegeben hat, wären die Valles Marineris ein geeigneter Ort dafür. Die „Mariner-Täler“, wie sie auf Deutsch nach ihrem Entdecker, der Mariner 9 -Sonde der Nasa, benannt wurden, sind rund 4.000 Kilometer lang, bis zu 600 Kilometer breit und stellenweise sieben Kilometer tief. Ihre Gestalt legt an einigen Stellen außerdem den Schluss nahe, dass dort einst Wasser geflossen sein könnte.


Die Valles Marineris ziehen sich über 4.000 Kilometer über den Mars. Das Deutsche Zentrum für Luft- und Raumfahrt will die Gegend mit Drohnen, Rovern und Landrovern erkunden.

(Foto: NASA)

Kein Wunder also, dass eine Suche nach Spuren von Leben auf dem Mars in dem Canyon-System stattfinden soll. Das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt DLR sucht derzeit nach Möglichkeiten, die Valles Marineris auf dem Mars mit einem Schwarm von Drohnen, Rovern und Laufrobotern zu erkunden.

An dem Projekt beteiligt sind auch Wissenschaftler der Universität Würzburg. Professor Sergio Montenegro, Inhaber des Lehrstuhls für Informationstechnik für Luft- und Raumfahrt, und seine Mitarbeiter sollen den Erkundungs-Fahr- und -Drohnen den richtigen Weg weisen. Aufgabe der Informatiker ist es, ein lokales Ortungs- und Landesystem zu entwickeln.

Drohnen weisen Robotern den Weg

Der Ansatz des DLR sieht vor, dass eine Armada von Robotern die Marstäler erkundet. Dabei müssen diese jederzeit genauestens wissen, wo sie und ihre Kollegen sich befinden. „Wenn beispielsweise eine fliegende Drohne aus der Luft eine interessante Struktur entdeckt hat, bei der es sich lohnen könnte, eine Bodenprobe zu entnehmen, muss sie dem entsprechenden Roboter den exakten Ort mitteilen können“, erklärt Sergio Montenegro. Und wenn sich die Akkus der Drohne leeren, sollte sie tunlichst den Weg zurück zum sogenannten Lander kennen, damit sie dort wieder Energie auftanken kann.

In Zeiten, da jeder Mensch dank seines Smartphones sofort ermitteln kann, wo er sich befindet, klingt diese Aufgabe nicht sonderlich schwierig. Für den Mars gilt das allerdings nicht. „Auf der Erde liefern uns GPS-Satelliten die notwendigen Informationen“, erklärt der Raumfahrtinformatiker. Deren Entwicklung habe mehrere Jahrzehnte gedauert und mehrere Milliarden Euro gekostet. Auf dem Mars stehen solche Informationen nicht zur Verfügung.

Deshalb soll der Lander bei seinem Anflug auf die Valles Marineris viele sogenannte Funkbojen abwerfen, die sich über die Oberfläche verteilen. Diese ermitteln anschließend per Funksignal ihre jeweilige Position bezogen auf den Standort des Landers, kommunizieren untereinander und liefern dann den Erkundungsrobotern – ähnlich wie GPS-Satelliten auf der Erde – die für die Navigation und Ortung nötigen Daten. Die entsprechende Software liefern die Würzburger Informatiker.

Geringste Abweichungen führen zu großen Fehlern

„Wir demonstrieren, dass die Technik funktioniert“: So beschreibt Sergio Montenegro die Aufgabe der Wissenschaftler in den kommenden drei Jahren. Das Hauptproblem dabei: Damit eine Funkboje weiß, wie weit sie vom Lander entfernt ist, muss sie mit höchster Präzision messen, wie lange ein Funksignal zwischen den beiden Punkten unterwegs ist. Dabei kommt es auf Nanosekunden an – schließlich würde ein Messfehler von einer tausendstel Sekunde bereits eine Abweichung von 300 Kilometern bedeuten. Unterschiedlich hohe Standorte im Canyon, Gesteinsstrukturen, die den Funksignalen den Weg versperren, Reflexionen an den Talwänden verkomplizieren die Messung zusätzlich und müssen von den Informatikern berücksichtigt werden.

Wie Sergio Montenegro und sein Team die Herausforderung angehen wird, steht schon fest. „Wir lassen zunächst zwei Objekte in Ruhe ihren Abstand messen“, sagt der Wissenschaftler. Mit der erforderlichen Präzision werde das schon „schwer genug“ sein. Wenn dieser Schritt klappt, wird das Team die Zahl der Objekte erhöhen; am Ende sollen diese sich dann auch bewegen. Gut möglich, dass in ein paar Jahren deshalb mehrere Quadrocopter durch einen fränkischen Steinbruch fliegen und dort eine Landung auf dem Mars simulieren.

Nebenprodukt: Einsatz unter Wasser

Ob die Würzburger Software tatsächlich einmal auf dem Mars zum Einsatz kommen wird, steht aktuell allerdings in den Sternen. Noch handelt es sich um einen Ansatz der DLR, der – wenn er verwirklicht werden sollte – hunderte von Millionen Euro kosten würde. Sollte die Politik das Geld nicht genehmigen, war die Arbeit der Informatiker trotzdem nicht umsonst. „Wir können das System genauso gut für die Unterwasserforschung einsetzen“, erklärt Montenegro. Auch dort existiert das Problem mit der Positionsbestimmung ohne die Hilfe von GPS-Satelliten. Der wesentliche Unterschied: Anstelle von Funk- kommen unter Wasser Audiosignale zum Einsatz.

Kontakt

Prof. Dr. Sergio Montenegro, Lehrstuhl für Informatik VIII (Informationstechnik für Luft- und Raumfahrt), T: (0931) 31-83715, sergio.montenegro@uni-wuerzburg.de

Weitere Informationen:

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/montenegro/ Zur Website von Prof. Dr. Sergio Montenegro

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schnelle Time-to-Market durch standardisierte Datacenter-Container
28.03.2017 | Rittal GmbH & Co. KG

nachricht Modellfabrik Industrie 4.0: Forschungs- und Trainingsplattform für Wissenschaft und Wirtschaft
28.03.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten