Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker realisieren einen Langzeitspeicher für die Quantenkommunikation

08.12.2008
Fortschritt für die Sicherheit der Datenübertragung - Wissenschaftler der Universität Heidelberg, der University of Science and Technology of China und der TU Wien haben einen Durchbruch in der Quantenkommunikation erreicht

Die Quantenkommunikation ermöglicht im Gegensatz zum heutigen Internet die Übermittlung von vertraulichen Daten wie Überweisungen oder Kreditkartennummern mit absoluter Sicherheit. Will man diese mithilfe der Quantenmechanik verschlüsselten Daten über große Entfernungen übertragen, muss man der unvermeidbaren Abschwächung des übermittelten Signals entgegenwirken.

Deswegen werden zur Herstellung einer Verbindung Zwischenstationen, sogenannte Quanten-Repeater, benötigt, die einen speziellen Speicher besitzen. Die bisher mögliche Speicherzeit begrenzte die Kommunikationsdistanz auf wenige Kilometer. Mit ihrer Arbeit haben die Physiker um Prof. Jian-Wei Pan diesen Quantenspeicher verbessert, so dass damit "abhörsichere" Verbindungen über hunderte von Kilometern erreicht werden können.

In der neuesten Ausgabe des renommierten Wissenschaftsjournals Nature Physics vom 7. Dezember 2008 berichten Pan und seine Kollegen über einen Quantenspeicher mit einem lasergekühlten Metallgas für einzelne Lichtteilchen, die Photonen. Deren Quantenzustände können nun erstmals im Millisekundenbereich gespeichert werden. Die Verbesserung wurde erzielt nach Untersuchung der Ursachen des "Informationsverlustes" während der Speicherung und der Reduzierung der Einflüsse von äußeren Streumagnetfeldern und Bewegungen der Atome im Innern des Quantenspeichers.

Die Wissenschaftler erwarten, dass durch die weitere Verbesserung ihres Speichers in den kommenden Jahren die maximalen Übertragungsdistanzen so weit gesteigert werden, dass ein sicheres Kommunikationsnetz mit Quantenrepeatern für ganz Europa möglich wird.

Originalreferenz:
A millisecond quantum memory for scalable quantum networks
Bo Zhao, Yu-Ao Chen, Xiao-Hui Bao, Thorsten Strassel, Chih-Sung Chuu, Xian-Min Jin, Jörg Schmiedmayer, Zhen-Sheng Yuan, Shuai Chen, and Jian-Wei Pan

Nature Physics (AOP) DOI: 10.1038/NPHYS1153

Kontakt:
Jian-Wei Pan
jian-wei.pan@physi.uni-heidelberg.de
Thorsten Straßel
strassel@physi.uni-heidelberg.de
Allgemeine Rückfragen für Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
michael.schwarz@rektorat.uni-heidelberg.de
Irene Thewalt
Tel. 06221 542310, Fax 542317
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie