Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photonischer Computer soll gedankenschnell rechnen

24.02.2010
Nach dem Vorbild der schnellen Informationsverarbeitung im menschlichen Gehirn konzipiert ein Konsortium europäischer Forschungseinrichtungen eine neue Hochleistungs-Rechentechnologie. Das im Januar gestartete Projekt „PHOCUS“ wird von der Europäischen Union gefördert. Im Projekt sollen photonische, mit Licht kommunizierende Systeme entwickelt werden, die komplexe Berechnungen durchführen und große Datenmengen schnell verarbeiten können – bei deutlich geringerem Stromverbrauch als heutige Supercomputer.

Das Gesicht einer bekannten Person unter vielen zu erkennen ist eine komplexe Aufgabe für das menschliche Gehirn. Es kann sie jedoch schon in Sekundenbruchteilen lösen. „Wie die elektrischen Signale der Milliarden von Nervenzellen des Gehirns organisiert werden, sodass das Organ so schnell richtige Antworten liefern kann, ist eine der großen offenen Fragen der Hirnforschung“, sagt Claudio Mirasso, der Projektkoordinator von der spanischen Universitat de les Illes Balears. In den vergangenen Jahren sei jedoch ein Paradigma entwickelt worden, das zu einer Antwort führen könnte.

Hirnforscher vergleichen die Reaktion des menschlichen Gehirns auf äußere Reize mit der Reaktion einer Flüssigkeit auf eine Störung, etwa einen Stein, der ins Wasser geworfen wird. Anhand der Wellen, die der Aufprall schlägt, kann erschlossen werden, wann und wo der Stein die Oberfläche getroffen hat. Auf vergleichbare Weise könnte es möglich sein, anhand der Reaktion neuronaler Netzwerke Informationen über die auslösenden Reize zu erschließen. Netzwerke, die solche Reize verarbeiten, werden als „Reservoirs“ bezeichnet.

Bislang können Computermodelle neuronaler Netzwerke jedoch nur wenige Reize erkennen, da das Zusammenspiel ihrer Bestandteile für jeden neuen Input erst eingestellt werden muss. Nach dem Konzept der so genannten Reservoir-Rechnung kann dieses Problem jedoch umgangen werden, da nur der Auslese-Mechanismus für berechnete Daten eingestellt werden muss. „Erste Experimente haben gezeigt, dass das Auslesen der Daten deutlich einfacher zu trainieren ist als die Reservoirs selbst“, sagt Jürgen Kurths vom Potsdam-Institut für Klimafolgenforschung.

Wie funktioniert nun die Reservoir-Rechnung? Äußere Reize oder Inputs können für eine gewisse Zeit im Reservoir nachgewiesen werden – ähnlich wie der Aufschlag eines Steins auf der Wasseroberfläche anhand der geschlagenen Wellen. Diese Form der Speicherung und die einsetzende Reaktion des Reservoirs wandeln den Input in eine große Zahl dynamischer Zustände des Reservoirs um; sie erzeugen einen hochdimensionalen Raum der Zustände. Der Vorteil der Reservoir-Berechnung liegt darin, dass die Reaktion des Reservoirs im hochdimensionalen Raum der Zustände leichter zu erkennen ist, als im ursprünglichen Input-Raum mit weniger Dimensionen. Die Anzahl der Dimensionen im Input-Raum entspricht beispielsweise der Anzahl von Merkmalen, die dazu notwendig ist, ein bekanntes Gesicht zu erkennen. In früheren Arbeiten wurde gezeigt, dass die Identifizierung im hochdimensionalen Raum genutzt werden kann, um verschiedene Inputs zu klassifizieren.

Kern der Reservoir-Berechnung ist das komplexe Zusammenspiel zweier gekoppelter, nicht-linearer dynamischer Systeme: der Speicherung des Inputs im Reservoir und dessen einsetzender Reaktion. In den letzten Jahren ist die Erforschung der Dynamik gekoppelter komplexer Systeme und insbesondere des Auftretens von Synchronisation weit vorangeschritten. Photonische Systeme haben dabei eine Schlüsselrolle gespielt und sie dienen auch als Beispiel für die Nutzbarkeit komplexen Verhaltens. Der Austausch zwischen Physikern, die Laser und nichtlineare Dynamiken erforschen, sowie Neurophysiologen und Hirnforschern führte zur Idee, dass photonische Systeme genutzt werden könnten, um Hirnfunktionen zu verstehen und eventuell nachbilden zu können.

Die Reservoir-Berechnung mit photonischen Systemen könnte vielfältig angewendet werden, es gibt jedoch noch eine Reihe ungelöster Probleme. Die Systeme können für extrem schnelle Datenverarbeitung eingesetzt werden und sind dabei kompatibel mit bestehender Telekommunikations-Technologie. Große photonische Systeme in bestehende Technologie einzubinden ist jedoch eine technologische Herausforderung und kostenaufwändig.

Das PHOCUS-Konsortium verfolgt einen neuen Ansatz, die Funktionalität eines komplexen Netzwerks mit nur wenigen photonischen Komponenten herzustellen. Man macht sich dabei die auftretenden zeitlichen Verzögerungen bei Rückkopplungen oder Kopplungen eines oder mehrerer Laser zunutze, um einen sehr hochdimensionalen Zustands-Raum zu erzeugen. Ziel des Projekts PHOCUS ist die Reservoir-Berechnung mithilfe photonischer Systeme für die Hochgeschwindigkeits-Datenverarbeitung einzusetzen. Damit könnten Alternativen zu Supercomputern oder Computerclustern für Anwendungen geschaffen werden, die geringe Größe und geringen Energiebedarf erfordern.

Hinweise für Redakteure:

PHOCUS, “Towards a PHOtonic liquid state machine based on delay-CoUpled Systems” wird von der Europäischen Kommission gefördert. Es gehört zu den fünf Prozent der Projekte, die aus dem Fond „Future and Emerging Technologies Open Scheme“ finanziert werden. Dieser Fond wurde speziell für Projekte eingerichtet, die auf visionären Ideen beruhen. Mit einem Budget von 2.394.000 Euro erforscht das PHOCUS-Konsortium, ob photonische Systeme für neue Rechentechnologien nach dem Vorbild neuronaler Netzwerke eingesetzt werden können.

Das auf drei Jahre angelegte Projekt wird von der spanischen Universitat de les Illes Balears koordiniert. Partner sind Consejo Superior de Investigaciones Cientificas, Spanien, das Frankfurt Institute for Advanced Studies, die Université de Franche-Comte, Frankreich, die Universidad de Cantabria, Spanien das Potsdam-Institut für Klimafolgenforschung und die Vrije Universiteit Brussel, in Belgien.

Projekt-Website:
http://ifisc.uib-csic.es/phocus/
Ansprechpartner:
Claudio R. Mirasso
Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB)
Campus Universitat de les Illes Balears
Telefon: +34 971 17 27 83
E-Mail: claudio@ifisc.uib-csic.es
PIK-Pressestelle:
Telefon: 0331 288 25 07
E-Mail: presse@pik-potsdam.de
Presse- und Öffentlichkeitsarbeit
Tel: +49 331 288 25 07
Fax: +49 331 288 25 70
E-Mail: presse@pik-potsdam.de
Potsdam-Institut für Klimafolgenforschung e.V.
Telegraphenberg A 31
Postfach 60 12 03
D-14412 Potsdam

| PIK Potsdam
Weitere Informationen:
http://www.pik-potsdam.de

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Mehrkernprozessoren für Mobilität und Industrie 4.0
07.12.2016 | Karlsruher Institut für Technologie

nachricht Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies
07.12.2016 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie