Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Kamera, zwei Fotos, drei Dimensionen: Einfacher und schneller zu 3D-Bildern

21.03.2012
Dreidimensional sehen: Eine Kamera benötigt in Zusammenarbeit mit einem PC drei Fotos und viel Zeit zum Rechnen, um genügend Informationen über die Gestalt von Objekten in ihrer Umwelt zu erhalten und zu einem 3D-Bild zu verarbeiten. Noch.

Denn an der FernUniversität in Hagen ist ein mathematischer Algorithmus entwickelt worden, mit dem zwei Aufnahmen aus „freier Hand“ mit einer einfachen Kamera genügen. Anwendungen dürften in vielen Bereichen möglich sein, von der Modellierung von Produkten über die Präsentation von Innenräumen bis hin zu PC-Spielen. Zudem dürfte sich das Verfahren auch für die Anwendung in 3D-Kino und -TV weiterentwickeln lassen.

Dreidimensional sehen: Dafür braucht das Gehirn zwei Augen und winzige Bruchteile von Sekunden. Eine Kamera benötigt in Zusammenarbeit mit einem PC drei Fotos und viel Zeit zum Rechnen, um genügend Informationen über die Gestalt von Objekten in ihrer Umwelt zu erhalten und zu einem 3D-Bild zu verarbeiten. Noch. Denn an der FernUniversität in Hagen ist ein mathematischer Algorithmus entwickelt worden, mit dem zwei Aufnahmen aus „freier Hand“ mit einer einfachen Kamera genügen.

Entwickelt wurde der Ansatz von Sergey Cheremukhin, studentische Hilfskraft im Lehrgebiet Mensch-Computer-Interaktion von Prof. Dr. Gabriele Peters. Sein Verfahren wurde als beste Einreichung bei den Informatiktagen 2012 nominiert, die am 23. und 24. März 2012 in Bonn stattfinden.

Anwendungsmöglichkeiten sehen Prof. Gabriele Peters und ihr Team in vielen Bereichen, von der Modellierung von Produkten über die Präsentation von Innenräumen bis hin zu PC-Spielen. Sogar die Planung von Theaterdramaturgien ist vorstellbar. Zudem dürfte sich das Verfahren auch für die Anwendung in 3D-Kino und -TV weiterentwickeln lassen.

Bisher sind drei Aufnahmen notwendig, um Rückschlüsse auf das Kamerasystem und seine Entfernung und Lage in Bezug auf das fotografierte Objekt, z.B. eine Clownminiatur oder ein Lego-Auto, ziehen zu können: Welche Kenngrößen kennzeichnen das Objektiv? Welche Brennweite hat es? Wie weit ist es vom Clown oder dem Auto entfernt? Wie ist seine relative Lage zu der Figur? Erst durch diese und noch viel mehr Informationen lassen sich drei oder mehr Fotos so einfach zusammenfügen, wie dies mit einem Programm zum Erstellen von Panorama-Fotos möglich ist (das aber keine 3D-Ansichten ermöglicht). Es entsteht ein dreidimensionales Objekt: eine Wolke aus vielen Punkten.

Beim herkömmlichen Verfahren mit drei Fotos gibt es zahlreiche Konstellationen, die Punktewolken erzeugen. Unter ihnen muss diejenige gefunden werden, die die Realität wiedergibt. Cheremukhin reduzierte die Kombinationsmöglichkeiten mathematisch so geschickt, dass zwei Fotos reichen, die sich nur geringfügig unterscheiden müssen.

Die Punktewolke wird anschließend mit einer Textur überzogen. Dieser „Überzug“, eine Computergrafik, macht aus dem 3D-Modell eine farbige Wiedergabe des fotografierten Motivs.

Natürlich bildet ein Flachbildschirm dieses dreidimensionale Objekt nur zweidimensional ab. Man kann es – wie ein herkömmliches Foto – um bis zu 360 Grad drehen. Es ist aber auch möglich, es um eine seiner Achsen rotieren zu lassen. So sieht man dem Clown nicht nur in die Augen, sondern kann auch sein Profil und sogar seinen Hinterkopf betrachten.

Um ein vollständiges Modell zu berechnen, das auch von hinten realistisch aussieht, benötigt man bisher etwa 7 bis 8 Aufnahmen, für eine teilweise 3D-Wiedergabe mindestens drei. Nach der Methode von Sergey Cheremukhin genügen für eine solche Teilrekonstruktion nun zwei Ansichten. Wie viele Aufnahmen für eine komplette Rundumansicht notwendig sind muss noch getestet werden: „In der Praxis entstehen Fehler, wenn die Objektivstandpunkte zu weit voneinander entfernt sind“, erläutert Projektleiter Dr. Klaus Häming. Deshalb sind auch weiterhin mehrere Aufnahmen notwendig, Cheremukhins Berechnung spart aber selbst in extremen Ausnahmesituationen einige ein: „Weniger Zeit, weniger Kosten, aber nicht weniger Qualität“, das war dem jungen Mathematiker wichtig.

Sein Verfahren wurde als beste Einreichung bei den Informatiktagen 2012 nominiert, die am 23. und 24. März 2012 in Bonn stattfinden. Die Informatiktage der Gesellschaft für Informatik e.V. (GI) gelten als die jährliche Veranstaltung für den wissenschaftlichen Nachwuchs der Informatik. Ausgewählte Studierende können ihre Einzelarbeiten vorstellen und in Workshops, Präsentationen und persönlichen Gesprächen Wissenschaftlerinnen und Wissenschaftler sowie Unternehmen kennenlernen. Eine Nominierung für den „Best Paper Award“ hat für die deutschen Informatik-Studierenden etwa die Bedeutung einer „Oscar-Nominierung“. Die diesjährige Preisverleihung findet am 24. März in Bonn statt.

Das Projekt wurde von der Deutschen Forschungsgemeinschaft gefördert, nach dem Ende wird Sergey Cheremukhin vom Lehrgebiet Mensch-Computer-Interaktion aus eigenen Mitteln beschäftigt.

Susanne Bossemeyer | idw
Weitere Informationen:
http://www.mci.fernuni-hagen.de/pr/abstract_cheremukhin.pdf

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie