Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochempfindliche Spürnase im All

02.05.2017

Die Europäische Weltraumorganisation ESA wird in den kommenden Jahren eine Reihe neuer Wettersatelliten ins All schicken, die wichtige meteorologische Messgrößen wie Niederschlag, Wasserdampf oder Temperatur besser denn je messen können. Herz dieser Messgeräte sind extrem empfindliche Mikrowellenverstärker, die am Fraunhofer-Institut für Angewandte Festkörperphysik IAF entwickelt wurden. Diese können auch sehr schwache Signale aus der Umwelt wahrnehmen, die für genauere Wettervorhersagen wichtig sind.

Unter Meteorologen gibt es den Witz, dass man das Wetter von morgen am sichersten vorhersagen kann, wenn man davon ausgeht, dass es genauso wird wie heute. In vielen Fällen läge man damit richtig, heißt es. Natürlich verlassen sich Meteorologen heute nicht mehr auf diese nicht ganz ernst gemeinte Daumenregel. Vielmehr stützen sie sich bei der Wettervorhersage auf Computersimulationen, die mit Tausenden von Messdaten gefüttert werden.


Verstärkermodul: Die rauscharmen, hochempfindlichen Mikrowellenverstärker des Fraunhofer IAF können bereits Signale von wenigen Nanowatt wahrnehmen

© Fraunhofer IAF

Solche Messdaten liefern seit einigen Jahrzehnten vor allem Satelliten, die mit feinen Sensoren die Temperatur oder den Niederschlag auf der Erde erfassen. Je besser diese Sensoren sind, desto genauer sind die Messwerte – und damit auch die Wettervorhersagen.

Die Europäische Weltraumorganisation ESA wird deshalb in den nächsten zwei Jahren die zweite Generation ihrer MetOp-Wettersatelliten (Meteorological Operational Satellite) ins All schießen – sechs Stück insgesamt mit hochmoderner Messtechnik. Für den Bau der MetOp-Satelliten der zweiten Generation – Start und Betrieb nicht eingerechnet – sind insgesamt 1,4 Milliarden Euro veranschlagt.

Messungen in der oberen Atmosphäre

Mit den Satelliten werden auch kleine aber sehr feine technologische Komponenten des Freiburger Fraunhofer-Instituts für Angewandte Festkörperphysik IAF ins All starten – ultragenaue Verstärker, die Mikrowellenstrahlung aufnehmen. Diese Strahlung wird von jedem Körper, jeder Fläche abgegeben – so ähnlich wie ein Körper Wärme abstrahlt, die man im Infrarotbild sehen kann.

Die Verstärker sind auf Mikrowellenfrequenzen geeicht, weil diese wichtige meteorologische Informationen liefern: Sie fangen Mikrowellen auf, die von Wasserdampf, Regen, Nebel oder Eiskristallen abgegeben werden – insbesondere auch von den Eiskristallen in den Cirrus-Wolken weit oben in der Atmosphäre, die einen wichtigen Einfluss auf das Klima und das Wetter haben sollen. Auch lässt sich aus der Mikrowellenstrahlung sehr genau auf die Temperatur auf dem Erdboden schließen.

Die Signale, die die Mikrowellenantennen der Satelliten empfangen, sind allerdings extrem schwach. Sie betragen nur wenige Nanowatt. Um diese Mikrowellensignale überhaupt verlässlich messen zu können, braucht man Verstärker. Als geradezu ideal haben sich dafür die Verstärker aus dem Fraunhofer IAF erwiesen. »Herzstück dieser Verstärker ist ein Transistor aus dem Halbleitermaterial Indium-Gallium-Arsenid«, sagt Dr. Michael Schlechtweg, der am Fraunhofer IAF das Geschäftsfeld Hochfrequenzelektronik leitet.

»Dieses Material hat die Eigenschaft, dass es von Elektronen sehr leicht durchflossen wird, selbst wenn das elektrische Feld, das die Elektronen antreibt, sehr klein ist.« Entsprechend werden die Elektronen im Transistor bereits durch sehr schwache Mikrowellensignale in Bewegung gesetzt, was den Transistor extrem empfindlich macht. »Dank der Mikrowellenschaltungen des Fraunhofer IAF können die MetOp-Satelliten künftig Temperatur, Wasserdampf und Niederschlagsart noch präziser ermitteln. Dies erhöht die Zuverlässigkeit der Wettervorhersage«, betont ESA-Projektleiter Ville Kangas. Transistoren aus dem herkömmlichen Halbleitermaterial Silizium hingegen wären dafür viel zu unempfindlich.

Kleinste Elektroden hochgenau fertigen

Doch nicht das Indium-Gallium-Arsenid allein macht die Verstärker so empfindlich. Auch die geringe Baugröße trägt ihren Teil dazu bei. Die Elektroden der Transistoren sind gerade einmal 50 bis 35 Nanometer (Millionstel Millimeter) lang. Erst damit werden winzige Elektronenströme beziehungsweise Signale messbar. »Diese extreme Empfindlichkeit und geringe Baugröße sind das Ergebnis 25 Jahre langer Forschungsarbeit«, betont Michael Schlechtweg. »In dieser Zeit haben wir einen hochgenauen Fertigungsprozess entwickelt, bei dem die Verstärkerschaltungen in 150 Produktionsschritten aufgebaut werden. Die Elektroden formen wir mit einem Elektronenstrahl. In dieser Präzision können das weltweit nur einige ganz wenige Firmen.«

Auf den MetOp-Satelliten werden die Verstärker in drei verschiedenen Mikrowelleninstrumenten eingesetzt, die unterschiedliche Dinge messen – eben Niederschlag, Wasserdampf, Eiskristalle oder Temperatur. Dafür mussten die Experten um Schlechtweg verschiedene Sensoren fertigen, die jeweils auf die entsprechende Mikrowellenfrequenz geeicht sind – konkret sind es fünf Frequenzbänder zwischen 54 und 243 Gigahertz. 243 Gigahertz sei ein beachtlicher Wert, betont Schlechtweg, denn je höher die Frequenz, desto leistungsfähiger müsse wiederum der Verstärker sein. Die Komponenten aus dem Fraunhofer IAF sind das. Und sie haben nicht nur die ESA überzeugt. Vor kurzem hat ein US-amerikanisches Unternehmen angefragt. Gut möglich also, dass die Mikrowellenverstärker aus dem IAF demnächst auch an Bord von US-Satelliten ins All starten.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/mai/hochempfindlich...

Michael Teiwes M. A. | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Europäisches Konsortium baut effizientestes Rechenzentrum der Welt
22.11.2017 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

nachricht Geheime Datensammler auf dem Smartphone enttarnen
21.11.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften