Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siliziumdioxid am Ende seiner Kräfte

05.01.2004


Wissenschaftler der Technischen Universitäten in Clausthal und Wien erforschten mittels Computersimulationen neues Material für noch kleinere und leistungsfähigere Transistorengenerationen.


Atomare Strukturen von SrTiO3/Si(001) Grenzschichten: Struktur A (links),nichtoxidierte Grenzschicht; Struktur B (rechts) , oxidierte Grenzschicht.



Die wissenschaftlichen Erkenntnisse von Clemens J. Först, Karlheinz Schwarz - beide TU Wien - und Christopher R. Ashman sowie Peter E. Blöchl von der TU Clausthal wurden in der aktuellen Ausgabe von "Nature" unter dem Titel "The interface between silicon and a high -k oxide" publiziert (Nature 427, 53 (2004)).



Je kleiner die Transistoren, desto schneller können sie schalten. Dadurch werden auch die Prozessoren immer schneller. Damit ein Transistor funktioniert, benötigt man eine dünne, isolierende Schicht, das Gatteroxid. Diese Schicht wird in wenigen Jahren nur noch ein Fünfzigtausendstel eines menschlichen Haares "dick" sein. Setzt man wie bisher Siliziumdioxid als Gatteroxid ein, kann man in einigen Jahren die Transistoren nicht mehr verkleinern und damit keine noch schnelleren Chips erzeugen. Weltweit zerbrechen sich Wissenschaftler seit Jahren den Kopf, wie der Weg der Miniaturisierung dennoch weiter beschritten werden kann. So einfach die Lösung klingt, so schwierig ist ihre Verwirklichung: ein neues Material muss her.

Ist Siliziumdioxid - allgemein als Fensterglas bekannt - nur noch wenige Atomlagen dick, verliert es seine isolierende Eigenschaft. Im Transistor entsteht eine Art Kurzschluss. Also benötigt man ein Material, mit dem eine dickere und damit isolierende Schicht erzeugt werden kann, das sich aber sonst wie eine ultradünne Schicht à la Siliziumdioxid verhält. Das Ziel sollen ja noch kleinere und leistungsfähigere Transistoren sein. Strontiumtitanat hat sich dabei als einer der aussichtsreichsten Kandidaten herauskristallisiert. Bisher kannte man jedoch nur das Kochrezept, nicht aber das Zusammenwirken der einzelnen Zutaten. Dieses Wissensdefizit stand einer gezielten Weiterentwicklung im Weg... Dem Forscherteam aus Wien und Clausthal ist es nun erstmals gelungen, genau dieses Zusammenwirken herauszufinden. Sie können dank Computersimulationen den Herstellungsprozess der Oxidschicht erklären und damit aufzeigen, wie man deren elektrische Eigenschaften beeinflussen kann.

Die wissenschaftlichen Erkenntnisse von Clemens J. Först, Karlheinz Schwarz - beide TU Wien - und Christopher R. Ashman sowie Peter E. Blöchl von der TU Clausthal wurden in der aktuellen Ausgabe von "Nature" unter dem Titel "The interface between silicon and a high -k oxide" publiziert (Nature 427, 53 (2004)).

"Computersimulationen bringen Licht in atomare Dimensionen, bei denen man sonst weitgehend blind war," erklärt Prof. Blöchl von der TU Clausthal. Dank der Computersimulationen ist es dem Forscherteam gelungen, Atom für Atom aufzuklären, wie ein neues Gatteroxid - nämlich Strontiumtitanat - auf einen Siliziumwafer aufgebracht werden kann. "Man kann sich den Verbund aus Silizium und Strontiumtitanat wie zwei aufeinander gesteckte Legobausteine vorstellen", erklärt Clemens Först von der TU Wien das wesentliche Resultat. Festkörperoberflächen weisen ein charakteristisches atomares und elektronisches Muster auf, das durch die Anordnung der Atome bestimmt ist. Das Ladungsmuster der Oxidschicht, vergleichbar mit dem Steckmuster eines Legobausteines, passt zu dem Muster der mit Strontium abgesättigten Siliziumoberfläche.

Zukunftsweisend sind die Erkenntnisse der Forscher aus Wien und Clausthal auch in Bezug auf die elektrischen Eigenschaften. Vergleichbar mit einem Damm, der Wasser aufhält, stellt das Oxid eine Barriere für Elektronen dar. Je höher diese Barriere ist, desto besser sind die isolierenden Eigenschaften. Die Wissenschafter konnten erstmals zeigen, dass die Barriere durch chemische Prozesse an der Grenzfläche entscheidend vergrößert werden kann. Dadurch können die Eigenschaften der Gatteroxide in Einklang mit technologischen Anforderungen gebracht werden.

Die Forschungsarbeit wurde im Rahmen des internationalen Forschungskonsortiums - Integration of very high-k dielectrics with silicon CMOS technology (INVEST) durchgeführt. Das Projekt wird vom 5. Rahmenprogramm für Technologie der Informationsgesellschaft (IST) der Europäischen Kommission gefördert.

Rückfragehinweis:

Mag. Clemens Först
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
Tel.: (+43) 01-58801-15677, Fax.: -15698
eMail: clemens.foerst@tuwien.ac.at

Prof. Peter E. Blöchl
Institut für Theoretische Physik
Technische Universität Clausthal
Leibnizstraße 10, D-38678 Clausthal-Zellerfeld
Tel. 05323 - 722021, Fax: - 723116
eMail: Peter.Bloechl@tu-clausthal.de

Jochen Brinkmann | idw
Weitere Informationen:
http://www.pt.tu-clausthal.de/atp

Weitere Berichte zu: Gatteroxid Schicht Siliziumdioxid Transistor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ein stabiles magnetisches Bit aus drei Atomen
21.09.2017 | Sonderforschungsbereich 668

nachricht Drohnen sehen auch im Dunkeln
20.09.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften