Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antennensysteme im Weltall

03.01.2008
GPS-Antennen sollen bei der ESA-Mission »Swarm« im Jahr 2010 das Erdmagnetfeld genau vermessen. Dabei ist etwa die richtige Position auf dem Satelliten besonders wichtig. Eine neue Software simuliert komplexe Antennensysteme – das spart Zeit und Kosten.

Im Jahr 2010 sollen sie ausschwärmen: Drei Kleinsatelliten wird die Europäische Weltraumorganisation ESA in eine Erdumlaufbahn in etwa 450 Kilometer Höhe schicken. Die Aufgabe der Mission »Swarm«: das Erdmagnetfeld und dessen Veränderungen mit einer bisher nicht erreichten Gründlichkeit zu untersuchen.

Die Forscher erwarten sich dadurch ein besseres Verständnis der Vorgänge im Erdinneren sowie des Erdklimas. Damit »Swarm« seine Mission erfüllen kann, sind hochpräzise Messinstrumente notwendig: Jeweils zwei GPS-Antennen werden auf jedem Satelliten platziert sein. Doch ihr Platz ist nicht willkürlich gewählt.

Die Position der Antennen ist besonders wichtig, denn sie hat wesentlichen Einfluss auf die Effizienz und Genauigkeit der Messungen. Außerdem können Strahlen, die zwischen Satellit und Antenne wechselwirken, die Messungen beeinträchtigen. Deshalb müssen die Ingenieure für eine optimale Abschirmung der Antennen gegen solche Störeinflüsse sorgen, ohne dass dabei die Gesamtleis-tung der Antennen vermindert wird.

Diese Probleme haben die Forscher am Fraunhofer-Chalmers Centre FCC in Göteborg, ein Schwesterinstitut des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM, gelöst: »Efield ist eine Software, die wir zusammen mit Universitäten, SAAB, Ericsson und Efield AB entwickelt haben«, sagt Dr. Fredrik Edelvik vom FCC. »Damit können wir komplexe Antennensysteme im Detail simulieren. Für »Swarm« stand uns SAAB Space AB zur Seite. Wir nutzten ein CAD-Modell, also ein computerunterstütztes Modell der Satelliten und der Antenne. Mit Hilfe von komplexen Algorithmen konnten wir das Verhalten der elektromagnetischen Felder simulieren und so die optimale Position der Antenne sowie die nötige Abschirmung bestimmen.« Für diese Rechenprozesse mussten die Forscher numerische Methoden entwickeln, mit denen sich die mathematischen Gleichungen der elektromagnetischen Felder lösen lassen. Auch die enorme Rechenleistung eines Computers mit einem Mehrkernprozessor war nötig. So konnten die Ingenieure die Simulationsdauer auf nur eine Stunde begrenzen.

Mittlerweile vertreibt die Firma Efield die gleichnamige Software. Durch die neuen Simulationsverfahren lassen sich innerhalb kürzester Zeit hochmoderne Antennensysteme entwickeln. Dabei sparen die Ingenieure während der Entwicklungsphase immense Kosten, da teure Messungen und die Herstellung von Prototypen entfallen. Außerdem ist die Entwicklungsphase stark verkürzt, die Antennensysteme kommen schneller auf den Markt.

Dr. Norbert Siedow | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.itwm.fraunhofer.de

Weitere Berichte zu: Antenne Antennensysteme Satellit Weltall

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Störungsfreie Kommunikation für die Fabriken von morgen
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie