Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Wolken ein Stück näher

26.07.2011
Die Technische Universität Ilmenau ist einem besseren Verständnis des Klimawandels ein kleines Stück näher gekommen.

Durch einen neuen wissenschaftlichen Ansatz verbesserte das Institut für Thermo- und Fluiddynamik Methoden zur Analyse von Wolkenbildungen. Die Forschungsergebnisse wurden in der renommierten Fachzeitschrift Proceedings der National Academy of Sciences der USA veröffentlicht.

In den heute gängigen computergestützten Klimamodellen ist die Modellierung von Wolken eine der größten Fehlerquellen für eine bessere Prognose der globalen Erwärmung. Das schnelle Kommen und Gehen der Wolken bereitet Klimaforschern wegen der scheinbaren Unberechenbarkeit großes Kopfzerbrechen.

Die Schwierigkeit, Wolken zu erforschen, rührt daher, dass zwei an sich bereits komplexe physikalische Prozesse zusammenkommen: Die Turbulenz in Strömungen und die Thermodynamik von Phasenumwandlungen. Was so kompliziert klingt … ist es auch. Die Bewegung von Luft und auch von Flüssigkeiten wird oft durch Temperaturunterschiede in der Strömung verursacht. Je höher die Unterschiede, desto turbulenter die Luftbewegung. Dadurch wird mehr Wärme verwirbelt, die wiederum starke Strömungen in Gang setzt.

Dieses Phänomen nennen die Wissenschaftler turbulente Konvektionsströmungen, wobei unter Konvektion die Übertragung von thermischer Energie verstanden wird. In vielen Fällen gehen diese Strömungen mit Phasenumwandlungen einher. Gesättigter Dampf wird dann durch Kondensation zu Wasser, wobei zusätzliche Wärme freigesetzt wird. Ein alltägliches Beispiel turbulenter Konvektion mit Phasenumwandlungen ist eben das Entstehen und das Vergehen von Wolken in der Atmosphäre.

Der Leiter des Instituts für Thermo- und Fluiddynamik der TU Ilmenau, Prof. Jörg Schumacher, beschreitet zur Erforschung der Konvektion mit Phasenumwandlungen und damit der Wolkenbildung einen neuen Weg. Gemeinsam mit seinem Kollegen Prof. Olivier Pauluis vom Courant Institut für mathematische Wissenschaften der New York University wendet er sich ab von der üblichen Herangehensweise, immer komplexere Strömungsmodelle nach unzähligen Parametern immer mehr zu verfeinern.

Die beiden Wissenschaftler „entschlackten“ die mathematischen Gleichungen und fragten sich: „Was sind die wesentlichen Bausteine für die Entstehung von Wolkenformationen?“ Sie bestimmten so einige Parameter, die in der Vergangenheit von der Klimaforschung nicht berücksichtigt worden waren. Ihr bisheriges Klimamodell sah beispielsweise weder Niederschläge noch Eisbildung in den Wolken vor.

Gleichzeitig ermittelten Schumacher und Pauluis die Grenzen ihrer im Vergleich mit herkömmlichen Modellen vereinfachten Beschreibung. Indem sie zum Beispiel den Grad der Turbulenz erhöhten, fanden sie heraus, dass zur Wolkenbildung eine horizontal immer weiter ausgedehnte Atmosphärenschicht notwendig wäre, ein Phänomen, das in der realen Wetterlagen aber nicht vorkommt.

Für die Wissenschaftler bedeutete dies, dass für die Wolkenbildung weitere Phänomene verantwortlich sein müssen, sie mussten also zusätzliche physikalische Prozesse in ihr Modell einbinden. Zum Beispiel die Rückstrahlung von Infrarotlicht in die obere Atmosphäre. In der Tat reflektieren Wolken einfallende Sonnenstrahlung und sorgen dafür, dass Wärme von den Kontinenten und Ozeanen teils in die höhere Atmosphäre entweichen kann, teils aber auch zurückgesendet wird. Wolken sind also auf verschiedene Arten direkt oder indirekt an der Erwärmung der Atmosphäre beteiligt.

Ihre Erkenntnisse gewannen Schumacher und Pauluis im Laufe des letzten Jahres mithilfe von Simulationen von Wolkenmodellen auf dem bundesweit schnellsten Superrechner am hoch spezialisierten Jülich Supercomputing Centre. Um vergleichbare Rechnungen an einem handelsüblichen PC durchzuführen, müssten 4000 Computer ein Jahr lang ununterbrochen arbeiten. Die Ergebnisse der Computersimulationen wurden jetzt in den Proceedings der National Academy of Sciences der USA veröffentlicht [Proc. Nat. Acad. Sci. USA, Early Edition, 18. Julli 2011]. Die Fachzeitschrift, die neueste Forschungsergebnisse aus allen Bereichen der Wissenschaft publiziert, hat den hohen Journal Impact Factor von ca. 10. Dieser Impact Factor einer Zeitschrift misst, wie oft andere Zeitschriften Artikel aus ihr im Verhältnis zur Gesamtzahl der dort veröffentlichten Artikel zitieren. Je höher der Impact Factor, desto angesehener die Zeitschrift.

Kontakt:
Prof. Jörg Schumacher
Leiter Institut für Thermo- und Fluiddynamik
Tel.: 03677 / 69-2428
Email: joerg.schumacher@tu-ilmenau.de

Bettina Wegner | idw
Weitere Informationen:
http://www.tu-ilmenau.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik