Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wolke in der Kammer

26.08.2008
Hat die kosmische Höhenstrahlung einen Einfluss auf das Klima?/EU fördert Doktoranden-Netzwerk CLOUD-ITN

Jeder weiß, dass Wolken das Wetter und das Klima entscheidend beeinflussen, aber ändert sich ihr Einfluss auf das Klima im Laufe der Zeit? Seit einigen Jahren gibt es Hinweise, dass in der Vergangenheit Schwankungen der kosmischen Höhenstrahlung nahezu zeitgleich mit Änderungen der Temperatur und Niederschläge auf der Erde auftraten.

Ursächlich verbunden sein könnten diese beiden Phänomene durch die Wolkenbildung, denn die kosmische Höhenstrahlung schafft in der Atmosphäre Ionen, die zu Schwebeteilchen (Aerosolpartikeln) anwachsen können. Und diese Partikel, an denen sich dann der Wasserdampf anlagert, sind der Ausgangspunkt für die Wolkenbildung. Wie diese Prozesse sich im Einzelnen abspielen und inwiefern sie das Klima beeinflussen könnten, soll jetzt ein von der europäischen Union gefördertes Doktoranden-Netzwerk im Rahmen von "CLOUD-ITN" klären. "Es ist das erste Klima-Experiment, das an einem Teilchenbeschleuniger ausgeführt wird", erklärt Koordinator Prof. Joachim Curtius vom Institut für Atmosphäre und Umwelt der Goethe-Universität.

Das am Europäischen Zentrum für Kernforschung CERN angesiedelte Experiment erhält in den kommenden vier Jahren eine Fördersumme von 2,3 Millionen Euro.

Hochenergetische galaktische kosmische Strahlung besteht im Wesentlichen aus Protonen und Alpha-Teilchen, die bei Supernova-Explosionen ins All geschleudert werden. Wenn sie die Erdatmosphäre durchqueren, lösen sie gewissermaßen im Vorbeifliegen Elektronen aus den atmosphärischen Gasen, so dass sie eine Spur geladener Moleküle hinterlassen.

Diese so genannten Ionen sind möglicherweise ideale Kondensationskeime für die Bildung von neuen Aerosolpartikeln in der Atmosphäre. Ohne die Aerosolpartikel als Kondensationskeime könnten sich die Wassertröpfchen nicht bilden, aus denen Wolken bestehen. Um die Details dieses Prozesses in Abhängigkeit von der Höhe und der Zusammensetzung der Atmosphäre zu verstehen, planen die Forscher im "CLOUD-Experiment", die Vorgänge im Labor zu simulieren.

Herzstück des Experiments ist eine Aerosol-Kammer, ein fast vier Meter hoher Zylinder mit einem Durchmesser von drei Metern, der mit Luft, Wasserdampf und variablen Anteilen gasförmiger Schwefelsäure gefüllt wird. "Mit der Schwefelsäure berücksichtigen wir den menschlichen Beitrag zur Luftverschmutzung durch Schwefeldioxid", erklärt Joachim Curtius, "Ein Teil des Schwefels gelangt aber auch durch Vulkane oder aus den Meeren in die Atmosphäre".

Die kosmische Höhenstrahlung simuliert ein Teilchenstrahl aus dem Teilchenbeschleuniger des Proton-Synchrotron-Beschleunigers am CERN bei Genf. "Damit kommen wir der galaktischen kosmischen Höhenstrahlung sehr nahe", sagt Curtius, "wir können ihre Intensität über einen Bereich von Erdbodenähe bis zu 15 Kilometer Höhe simulieren".

An dem Projekt sind außer dem CERN noch das Paul Scherrer Institut, die Universitäten in Helsinki, Leeds, Reading und Wien sowie das Institut für Troposphärenforschung aus Leipzig und die Firma Ionicon Analytik aus Innsbruck beteiligt. Insgesamt werden in CLOUD-ITN acht Doktoranden und zwei Postdoktoranden gefördert. Der Frankfurter Beitrag besteht in der Messung der gasförmigen Schwefelsäure und in der Entwicklung einer Nachweismethode für Tröpfchen oder andere Schwebeteilchen, deren Durchmesser kleiner ist als drei Nanometer. Die kritische Größe für die Aerosolbildung in der Atmosphäre liegt nämlich bei ein bis zwei Nanometern. Bisher entzieht sich dieser Bereich aber der direkten Beobachtung.

Die Ergebnisse von "CLOUD-ITN" sollen künftig in Klimamodelle eingespeist werden. Denn die Wolkenbildung stellt bisher einen der größten Unsicherheitsfaktoren bei der Vorhersage des Klimawandels dar.

Informationen: Prof. Joachim Curtius, Institut für Atmosphäre und Umwelt, Campus Riedberg, Tel.: (069)-798-40258, Curtius@iau.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am

1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit 45 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Uni den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die Goethe-Universität als eine der forschungsstärksten Hochschulen Deutschlands.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation,
Postfach 11 19 32, 60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wie der Nordatlantik zum Wärmepirat wurde
23.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie