Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie stark schwanken die Temperaturen im Meer?

11.11.2014

Neue Studie zeigt erhebliche Differenzen zwischen Klimaarchiven und Klimamodellen

Das Klima der Erde scheint in den letzten 7000 Jahren sehr viel unbeständiger gewesen zu sein als bisher gedacht. Diese Schlussfolgerung legt eine neue Studie nahe, die im Lauf dieser Woche im US-amerikanischen Wissenschaftsmagazin „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht wird.


Wissenschaftler analysieren einen Sedimentkern

Foto: Thomas Ronge, Alfred-Wegener-Institut

Wissenschaftler vom Potsdamer Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, und der Harvard University zeigen darin, dass die aus Klimaarchiven rekonstruierten Meeresoberflächentemperaturen auf langen Zeitskalen erheblich stärker variieren als von Klimamodellen berechnet. Konsequenz: entweder liefern gängige Klimaarchive ungenaue Temperatursignale oder die getesteten Modelle unterschätzen die regionalen Klimaschwankungen in der jüngeren Erdgeschichte.

Wer die Klimageschichte rekonstruieren will, muss natürliche Archive studieren, denn der Mensch hat den Planeten erst seit erdgeschichtlich kurzer Zeit vermessen. Reale Messwerte von Meerestemperaturen gibt es erst seit ungefähr 150 Jahren.

Für die Zeiträume davor sind Wissenschaftler auf sogenannte „Proxies“ angewiesen – Indikatoren, die indirekte Rückschlüsse auf Klimadaten früherer Zeiten erlauben. Solche Klimaarchive beziehen sich in der Regel auf räumlich begrenzte Gebiete und unterscheiden sich in ihrer zeitlichen Auflösung. Außerdem zeigen sie mitunter ein erhebliches Hintergrundrauschen.

„In unserer Untersuchung interessierte uns nicht, wie warm das Klima zum Zeitpunkt X in einer bestimmten Region gewesen sein mag. Wir wollten rückblickend analysieren, wie stark das regionale Klima über Jahrzehnte bis Jahrtausende zeitlich variiert“, erläutert Dr. Thomas Laepple vom Alfred-Wegener-Institut.

„Eine unserer größten Herausforderungen bestand deshalb darin, verschiedene Messdaten und Klimaarchive aus einer Vielzahl von Regionen untereinander vergleichbar zu machen und das natürliche Rauschen herauszufiltern, das die Aussagekraft mancher Klimaarchive stark verfälscht.“

Laepple und sein Kollege Peter Huybers von der Harvard University verglichen Daten aus Temperaturmessungen, Korallen und Sedimentkernen, die aus vielen verschiedenen Meeresregionen der Erde stammen. Klimadaten aus heutigen Korallen reichen maximal 400 Jahre in die Vergangenheit zurück. Sie erlauben Rückschlüsse auf Temperaturänderungen im Lauf von Jahrzehnten oder Jahrhunderten.

Meeressedimente können sehr viel ältere Informationen enthalten, erreichen in der Regel aber nur eine Auflösung über Jahrhunderte und Jahrtausende. Durch verschiedene Eich- und Filterprozesse gelang es den beiden Forschern, eine Vielzahl verfügbarer Daten aus Temperaturmessungen und Klimaarchiven so zu kombinieren, dass sie die rekonstruierten Meeresoberflächentemperaturen an verschiedenen Orten der Welt über einen Zeitraum von 7000 Jahren auf unterschiedlichen Zeitskalen miteinander vergleichen konnten.

„Wir haben zunächst einmal festgestellt, dass die natürlichen Schwankungen der Meerestemperaturen überraschend groß sind und um so stärker waren, je länger die analysierten Zeiträume sind“, so ein erstes Fazit der beiden Wissenschaftler. In einem zweiten Schritt haben sie dann rund 20 Klimamodelle in mehr als 100 Testläufen untersucht um festzustellen, wie gut die Modelle diese Temperaturschwankungen simulieren können.

Ergebnis: Über Zeiträume von Jahren und Jahrzehnten stimmten Mess- bzw. Klimaarchivdaten und Modellläufe recht gut überein. Doch je länger die Zeitskalen, desto größer wurde die Diskrepanz - am stärksten in tropischen Meeresregionen. Auf tausendjähriger Zeitskala unterschätzten gängige Klimamodelle die aus den Klimaarchiven rekonstruierten Schwankungen der Meeresoberflächentemperaturen um den Faktor 50.

„Theoretisch gibt es nun zwei denkbare Erklärungen“, so Thomas Laepple. „Entweder liefern die Klimaarchive keine verlässlichen Temperaturdaten, oder die Klimamodelle unterschätzen die Variabilität des Klimas. Vielleicht stimmt auch beides ein bisschen.“ Da das Ergebnis auf mehreren unabhängigen Klimaarchiven und Korrekturmethoden beruht, glaubt Laepple, dass das Problem eher bei den Modellen liegt.

„Wir müssen die Vorhersagen, wie stark das Klima regional schwanken kann, wahrscheinlich korrigieren“, ist Thomas Laepple aufgrund seiner Forschungsergebnisse überzeugt. „Angesichts der enormen Mengen von Treibhausgasen, die in die Atmosphäre abgegeben werden, können wir uns sicher sein, dass es global wärmer wird. Aber die Bandbreite von Veränderungen, auf die wir zusteuern, ist wahrscheinlich wesentlich größer, als wir sie uns derzeit vorstellen.“ Denn die natürlichen Schwankungen, die den Trend zur Erwärmung überlagern, zeigen immer in beide Richtungen: Temperaturen können in einer bestimmten Region im Zeitraum von Jahrzehnten oder einem Jahrhundert weniger oder stärker steigen als Klimamodelle es derzeit im globalen Mittel prognostizieren.

Weil es sich hierbei um eine zentrale Frage für die Prognose künftiger Klimabedingungen auf der Erde handelt, leitet der Potsdamer Physiker seit etwa einem Jahr eine eigene Forschungsgruppe, die sich schwerpunktmäßig mit diesem Thema beschäftigt. Sie trägt den Namen „ECUS - Estimating climate variability by quantifying proxy uncertainty and synthesizing information across archives“.

„Wir stecken“, so Laepple, „mitten in einem Experiment, das sich nicht zurückdrehen lässt, das wir aber immer noch zu grob verstehen, um auf längeren Zeitskalen regional eindeutige Aussagen zu finden. Leider müssen wir mit dieser Unsicherheit wohl noch eine Weile leben.“

Informationen für Redakteure/Medienvertreter:

Die Studie erscheint in der Woche ab dem 10. November 2014 (46. Kalenderwoche) unter folgendem Titel in der Online „Early Edition“ des Fachmagazins Proceedings of the National Academy of Sciences (PNAS):
Thomas Laepple und Peter Huybers: Ocean surface temperature variability: Large
model–data differences at decadal and longer periods. DOI: 10.1073/pnas.1412077111 (Link: www.pnas.org/cgi/doi/10.1073/pnas.1412077111  oder in der Online Early Edition unter http://www.pnas.org/content/early/recent )

Ihr wissenschaftlicher Ansprechpartner am Alfred-Wegener-Institut ist Dr. Thomas Laepple (Tel: 0177-2398233, E-Mail: Thomas.Laepple@awi.de).

In der AWI-Pressestelle steht Ihnen Ralf Röchert (Tel: 0471-48 31-1680, E-Mail: medien@awi.de) für Rückfragen zur Verfügung.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/#!/AWI_de) und Facebook (www.facebook.com/AlfredWegenerInstitut) . So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. 

Folke Mehrtens | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wie der Nordatlantik zum Wärmepirat wurde
23.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie