Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie es den Karbonaten im Erdinneren ergeht

04.02.2015

Karbonate sind die wichtigsten Kohlenstoffspeicher der Erde. Doch welche Rolle spielen sie im Erdinneren? Wie reagieren sie auf die Bedingungen im Erdmantel?

Mit diesen Fragen befasst sich jetzt eine Forschergruppe von Wissenschaftlern aus Frankfurt, Bayreuth, Berlin/Potsdam, Freiberg und Hamburg, die von der DFG gefördert wird. Die Forschergruppe bringt Experten verschiedener geowissenschaftlicher Disziplinen sowie hochmoderne Technik zusammen.

Die Erde hat einen Radius von durchschnittlich rund 6400 Kilometern. Die tiefste Bohrung, zu der der Mensch bisher in der Lage war, ging jedoch nur bis in zwölf Kilometer Tiefe. Und selbst bei enormem technischem Fortschritt sei es undenkbar, die tiefen Schichten jemals empirisch erforschen zu können, sagt Björn Winkler, Professor für Kristallographie an der Goethe Universität Frankfurt und Koordinator der neuen Forschergruppe.

„Wie es da drinnen aussieht, das können wir nur durch die Kombination von Experimenten und Modellrechnungen herausfinden“, erklärt er. Während es über Silikate, die ein wesentlicher Bestandteil des Erdmantels sind, schon genauere Erkenntnisse gibt, sind Karbonate bislang noch wenig erforscht. „Der Erdaufbau ist ohne Karbonate erklärbar – die Frage ist allerdings: wie gut?“, sagt Winkler.

„Strukturen, Eigenschaften und Reaktionen von Karbonaten bei hohen Temperaturen und Drücken“ („Structures, Properties and Reactions of Carbonates at High Temperatures and Pressures“) lautet der Titel des Projekts, das die DFG von Mitte Februar an fördert. „Wir wollen verstehen, wie die Erde funktioniert“, umschreibt Winkler das übergeordnete Forschungsinteresse der rund 30 Wissenschaftler und ihrer Teams. Welche Möglichkeiten unser Planet hat, Kohlenstoff zu lagern, wie viel Kohlenstoff es überhaupt auf der Erde gibt – der gesamte Kohlenstoffkreislauf sei nach wie vor ein Geheimnis.

Im Fokus der Forschergruppe, die sieben Einzelprojekte verbindet, steht der Erdmantel, die 2850 Kilometer mächtige mittlere Schale im inneren Aufbau der Erde. Ziel ist das bessere Verständnis von Phasenbeziehung, Kristallchemie und physikalischen Eigenschaften der Karbonate. Dazu sollen die Bedingungen der Mantelübergangszone sowie des darunterliegenden unteren Erdmantels – also sehr hohe Temperaturen und ein sehr hoher Druck – simuliert werden. Jedes der sieben Projekte nimmt einen anderen Aspekt unter die Lupe, zum Beispiel das Karbonat Calcit oder die Kombination von Karbonaten mit Eisen, mit Silikaten oder unter Schock.

Winkler und sein Team befassen sich schon seit sechs Jahren mit der Thematik. Sein Mitarbeiter Dr. Lkhamsuren Bayarjargal wurde für die Arbeit mit Hochleistungslasern bereits mit dem Max-von-Laue-Preis der Deutschen Gesellschaft für Kristallographie ausgezeichnet sowie vom Fokus-Programm der Goethe-Universität gefördert. Und auch die überregionale Zusammenarbeit der Forscher ist nicht ganz neu. Mit Hilfe der DFG-Mittel können jetzt jedoch spezielle Apparaturen konstruiert werden, um die Bedingungen im Erdmantel zu simulieren. So genannte Diamantstempelzellen erlauben Drücke, die eine Million mal so stark sind wie der Atmosphärendruck; Hochleistungslaser sind in der Lage, Temperaturen von bis zu 5000 Grad Celsius zu erzeugen. Dass dies die Bedingungen sind, die im Erdmantel herrschen, wurde durch entsprechende Berechnungen belegt.

Winzigste Mengen eines Karbonats genügen schon für ein Experiment. Die Substanz wird im Experiment den entsprechenden Bedingungen ausgesetzt und gleichzeitig von den Wissenschaftlern auf Veränderungen hin untersucht. Hierbei wird mit unterschiedlichen Techniken gearbeitet – in Frankfurt z.B. mit Raman-Spektroskopie, in Potsdam mit Infrarot-Spektroskopie. „Wenn wir auf unterschiedlichen Wegen zum selben Ergebnis kommen, wissen wir, dass wir richtig liegen“, so Prof. Winkler.

Information: Prof. Dr. Björn Winkler, Facheinheit Mineralogie, Institut für Geowissenschaften, Campus Riedberg, Tel: (069) 798-40107, b.winkler@ kristall.uni-frankfurt.de.

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie