Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Pazifik auf die Gletscher wirkt

27.10.2015

Es ist der stärkste Mechanismus für Klimavariabilität auf der Erde. Das natürliche Phänomen El Niño Southern Oscillation (ENSO) stört das Wetter im Pazifik immer wieder für mehrere Monate – die Auswirkungen breiten sich aber über den gesamten Globus aus. Welche Folgen ENSO auf Gebirgsregionen hat, das untersucht ein internationales Forscherteam unter Leitung der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in den kommenden drei Jahren. Die Deutsche Forschungsgemeinschaft fördert das Projekt mit rund 230.000 Euro.

Der Mechanismus, der die Wechselwirkung zwischen Atmosphäre und Ozean im Pazifik bestimmt – El Niño Southern Oscillation (ENSO) genannt –, ist der stärkste Mechanismus für Klimavariabilität auf der Erde. ENSO bestimmt, wie Luft und Wasser im Pazifik bis hin zum Indischen Ozean zirkulieren und führt damit zu außergewöhnlichen jahreszeitlichen Witterungen in den Tropen und darüber hinaus.


Installation einer automatischen Wetterstation vor dem Eiskliff des Nördlichen Eisfeldes am Kilimandscharo auf 5.700 m Höhe.

Bild: Thomas Mölg

Dabei stört ENSO zuallererst die durchschnittlichen Bedingungen des tropischen Zirkulationssystems und verursacht Anomalien: Das Phänomen „El Niño“ ist weltweit gefürchtet, da es zu extremen Verhältnissen führt, wie beispielsweise Dürre, Stürme, Überschwemmungen oder Hitzewellen. In bodennahen Schichten sind ENSO und seine Auswirkungen bereits gut erforscht.

Aber welchen Einfluss hat ENSO auf Gebirge und Gletscherregionen? Dieser Frage gehen FAU-Wissenschaftler um Klimatologe Prof. Dr. Thomas Mölg zusammen mit Kollegen der Universität Innsbruck, der University of Massachusetts und der neuseeländischen University of Otago in einem von der Deutschen Forschungsgemeinschaft geförderten Projekt die nächsten drei Jahre nach.

Ziel des Projekts ist es, ein Rechenmodell zu erstellen, das sowohl die Auswirkungen von ENSO auf Gletscher und Gebirge in verschiedenen Klimazonen, als auch die Einflüsse auf die großräumige Klimadynamik einbezieht – und das über eine Zeitspanne von mehreren Jahrzehnten.

„Unser Modell soll simulieren können, wie die jahreszeitlichen Wetteränderungen im Pazifik durch ENSO in Gebirgsregionen ankommen“, erklärt Prof. Mölg vom FAU-Institut für Geographie. Ein umfangreiches Projekt – müssen doch regionale und lokale Wetterfaktoren miteinander verbunden und die verschiedenen zeitlichen und räumlichen Dimensionen, die ENSO durchläuft, berücksichtigt werden. Nur mit Hilfe von Supercomputern, wie etwa am Regionalen Rechenzentrum Erlangen, lassen sich solche Simulationen durchführen.

Messungen auf der höchsten Wetterstation Afrikas

In das umfangreiche Modell laufen dabei Daten aus einzigartigen Messungen in sehr großer Höhe ein. Das internationale Forscherteam betreibt unter anderem die höchste Wetterstation Afrikas: Rund 20 Meter unterhalb des Gipfels des Kilimandscharos sammeln die Klimatologen schon seit vielen Jahren Klimadaten.

Dabei müssen diese sowie die anderen Stationen regelmäßig besucht und gewartet werden, denn die Bedingungen auf ca. 6000 Meter sind nicht nur für Menschen, sondern auch für die Messgeräte eine große Herausforderung. Qualitativ hochwertige Messdaten aus hohen Luftschichten sind deshalb nach wie vor Mangelware. Weitere Wetterstationen des internationalen Teams, die in das Projekt einfließen, stehen in Südamerika und Neuseeland.

Besonders interessant werden die Berechnungen im Modell für die jüngsten Jahrzehnte aufgrund des Klimawandels. Denn dieser wirkt auch auf ENSO ein. „Durch den Klimawandel kann ENSO seltener oder häufiger vorkommen, mehr oder weniger intensiv, und auch die Zonen, die ENSO beeinflusst, können sich verschieben“, erklärt Mölg. „Diese geänderte Rahmenbedingung muss in der Auswertung der Modellrechnungen und Messungen genauestens berücksichtigt werden.“

Mithilfe der Ergebnisse wollen die Wissenschaftler die Frage beantworten, wie die Koppelung zwischen großräumiger, bodennaher Klimavariabilität und dem Klima in höheren Luftschichten physikalisch abläuft. „Ganz generell wird dies unser Verständnis der Funktionsweise des Klimas erweitern, was für bessere Abschätzungen des zukünftigen Klimas entscheidend ist. Im Kontext des Projekts hat dies besonders hohe Relevanz, da Gebirge mit ihren Gletschern in vielen Erdteilen einen wesentlichen Faktor für Wassersicherheit, Naturgefahren und den Beitrag zum Meeresspiegelanstieg darstellen“, erklärt Mölg.

Weitere Informationen:
Prof. Dr. Thomas Mölg
Tel.: 09131/85-26325
thomas.moelg@fau.de

http://www.fau.de/

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: ENSO El Niño Gletscher Klimavariabilität Pazifik Wetteränderungen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Besseres Monitoring der Korallenriffe mit dem HyperDiver
24.08.2017 | Max-Planck-Institut für marine Mikrobiologie

nachricht Globale Klimaextreme nach Vulkanausbrüchen
22.08.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungsnachrichten

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie