Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn dem Meeresboden der Atem stockt: Zeitweiliger Sauerstoffmangel hat jahrzehntelang Auswirkungen

13.02.2017

Periodische Schwankungen im Sauerstoffgehalt des Bodenwassers können den Kohlenstoffspeicher im Meeresboden und seine Bewohner auf Jahrzehnte verändern. Das zeigt eine neue Untersuchung im Schwarzen Meer, die nun in der Fachzeitschrift Science Advances erscheint. Die Ergebnisse sind besonders bedeutsam, da Sauerstoff in immer größeren Bereichen der Meere Mangelware ist.

Der Meeresboden spielt eine Schlüsselrolle in den weltweiten Stoffkreisläufen. Die Organismen, die dort leben, verzehren und verarbeiten herabsinkendes organisches Material. Ein kleiner Teil des eintreffenden Materials wird üblicherweise im Boden vergraben.


Tauchboot JAGO nimmt Sedimentkerne am Meeresboden. Sauerstoff dringt nur bis knapp unter die Oberfläche ein, die schwarzen und grauen Schichten sind sauerstofffrei.

JAGO-Team, GEOMAR Kiel


Mit Hilfe eines Multicorers sammelten Jessen und seine Kollegen Sedimentkerne, anhand derer sie detaillierte Untersuchungen der Zusammensetzung und Besiedlung des Meeresbodens durchführen konnten.

Ryan North, Eawag

Der Großteil wird von den Bodenbewohnern remineralisiert, also abgebaut und in seine Bestandteile zerlegt, und steht danach dem Ökosystem für neue Biomasseproduktion zur Verfügung. So beeinflusst das Schicksal dieses Materials am Meeresboden maßgeblich die weltweiten Kohlenstoff- und Nährstoffzyklen und in der Folge die Produktivität der Meere und unser Klima.

Kurzer Mangel, lange Wirkung

Welche Organismen am Meeresboden leben und wie aktiv sie sind, hängt maßgeblich davon ab, wie viel Sauerstoff im Meeresboden verfügbar ist. Inwieweit auch kurzfristige Schwankungen des Sauerstoffgehalts die Remineralisierung - und damit die Menge an Kohlenstoff, die vergraben wird - verändern, war lange unklar.

Die nun vorliegende Studie einer internationalen Forschergruppe um Gerdhard Jessen vom Max-Planck-Institut für Marine Mikrobiologie zeigt: Sinkende Sauerstoffwerte im Bodenwasser beeinflussen den Kohlenstoffspeicher im Meeresboden früher und über größere Flächen als bisher angenommen, und das über Jahrzehnte hinweg. Wird der Sauerstoff am Meeresboden knapp, so wird deutlich weniger organisches Material abgebaut und deutlich mehr vergraben.

Und was einmal vergraben ist, bleibt auch lange im Untergrund. „Um die Hälfte mehr Material verbleibt im Boden, wenn der Sauerstoff im Bodenwasser immer mal wieder knapp wird“, so Jessen. „Sogar für die Tiere leckere Häppchen wie frisch abgesunkenes Algenmaterial, das eigentlich leicht umzusetzen ist, bleibt dann jahrzehntelang ungenutzt.“

Das Schwarze Meer als natürliches Labor

Im Labor sind solche langfristigen und komplexen Prozesse nur schwer nachzuvollziehen. Deswegen untersuchte das internationale Forscherteam im Rahmen des EU FP7 Projektes HYPOX mit dem Forschungsschiff Maria S. Merian das Schwarze Meer, das größte natürliche sauerstofffreie Gewässer der Welt.

Dort gibt es durch eine besonders stabile Schichtung des Meeres eine natürliche Abnahme des Sauerstoffs im Bodenwasser, vom gut durchlüfteten Flachwasser über Gebiete mit variablen Sauerstoffbedingungen bis ins sauerstofffreie Tiefenwasser unterhalb von etwa 160 m Wassertiefe. „Wir nutzten den Meeresboden im Schwarzen Meer wie ein natürliches Labor. Dort lässt sich untersuchen, was vielen Bereichen der Weltmeere bevorstehen könnte“, erklärt Jessen.

„Sauerstoffarme Zonen in den Ozeanen nehmen durch menschliche Nährstoffeinträge und Ozeanerwärmung immer weiter zu“, erläutert Antje Boetius, Leiterin der HGF MPG Brückengruppe für Tiefsee-Ökologie und -Technologie und Leiterin der Studie. „Deswegen ist es besonders wichtig, zu verstehen und zu messen, was Sauerstoffarmut für das Leben im Meer und die großen biogeochemischen Kreisläufe bedeutet.“

Veränderte Besiedelung

Wieso haben die zeitweiligen Atemprobleme des Meeresbodens so starke Auswirkungen? „Der Sauerstoffmangel verändert die Bewohner des Meeresbodens“, so Boetius. Vor allem große Tiere wie Würmer und Muscheln brauchen Sauerstoff zum Leben. Diese Tiere durchwühlen das Sediment auf der Suche nach Nahrung und beim Anlegen von Wohnbauten und mischen dabei auch Nahrung und Sauerstoff für kleinere Meeresbodenbewohner unter.

„Wird der Sauerstoff knapp, verschwinden die Tiere. Die im Meeresboden lebenden Bakterien sind dann quasi allein für die Umsetzung des organischen Materials, die Remineralisierung, verantwortlich.“ Doch sie sind dabei dann sehr langsam. So kommt es, dass bei weniger Sauerstoff im Bodenwasser mehr organisches Material vergraben wird. Anaerobe Mikroorganismen, die ohne Sauerstoff beispielsweise durch Fermentation oder Sulfatreduktion ihre Energie gewinnen, übernehmen das Ruder. Sie produzieren dann den giftigen Schwefelwasserstoff, der den Abbau weiter verlangsamt.

„Vom Schwarzen Meer können wir viel lernen“, sagt Boetius, „denn dort kann man die Auswirkungen von Sauerstoffmangel auf das Ökosystem Meer und seine Bedeutung auch für uns Menschen besonders gut erforschen. Solche Untersuchungen sind angesichts des globalen Wandels unverzichtbar, um mögliche Alarmsignale aus den Ozeanen rechtzeitig zu erkennen.“

Originalveröffentlichung
Gerdhard L. Jessen, Anna Lichtschlag, Alban Ramette, Silvio Pantoja, Pamela E. Rossel, Carsten J. Schubert, Ulrich Struck, Antje Boetius: Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Science Advances 2017. DOI: 10.1126/sciadv.1601897

Beteiligte Institute
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven
Universität Concepción, Concepción, Chile
ICBM-MPI Brückengruppe, Universität Oldenburg
Eawag: Wasserforschungsinstitut des ETH-Bereichs, Kastanienbaum, Schweiz
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin


Rückfragen bitte an

Dr. Gerdhard Jessen
E-Mail: gjessen(at)mpi-bremen.de
gjessen(at)gmail.com

Prof. Dr. Antje Boetius
Telefon: +49 421 2028 860
E-Mail: aboetius(at)mpi-bremen.de

oder an die Pressestelle

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Telefon: +49 421 2028 704
E-Mail: presse(at)mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de/Wenn_dem_Meeresboden_der_Atem_stockt.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics