Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Störungsaktivität vor Chile entdeckt - Ursprung des Tsunamis 2010 in Maule bestimmt

02.09.2014

Nach dem schweren Erdbeben vor Chile im Februar 2010 konnten Wissen-schaftler des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel in Zusammenarbeit mit Forschern aus Potsdam und Chile durch Messungen der Nachbeben die genaue Lage der Bruchstelle zwischen der südamerikanischen und der pazifischen Nazca-Platte ermitteln. Die Studie wurde jetzt in der internationalen Fachzeitschrift Geology publiziert.

Im Februar 2010 ereignete sich in Chile eines der schwersten Erdbeben der vergangenen 50 Jahre. Mit einer Stärke von 8.8 zog das Beben einen Tsunami nach sich und weite Küstenbereiche der Regionen Maule und Bío-Bío wurden überflutet. In den Folgemonaten kam es zu vielen weiteren kleinen Nachbeben durch regionale tektonische Spannungen.

Forschungsschiff SONNE

Mit dem Forschungsschiff SONNE machten sich die Wissenschaftler von GEOMAR auf die Suche nach dem Ursprung des schweren Erdbebens vor Chile 2010.

Foto: B. Grundmann, GEOMAR

Tsunamis entstehen immer dort, wo es zu starken, vertikalen Bewegungen des Meeresbodens kommt: Dadurch, dass sich vor Chile die ozeanische Nazca-Platte unter die südamerikanische Platte schiebt, können die Platten miteinander verhaken, Spannungen bauen sich auf, die sich dann plötzlich lösen. Bei dem heftigen Erdbeben in Chile ist genau das passiert.

Die Nazca-Platte wurde noch ein Stück weiter unter die Kontinentalplatte geschoben. Dabei wird die südamerikanische Platte nach oben gedrückt, es entsteht ein sogenannter Meeresboden-Versatz. Bei dieser starken Bodenbewegung wird die gesamte Wassersäule in Bewegung versetzt, eine Flutwelle entsteht, die uns als Tsunami bekannt ist.

Dadurch, dass der Meeresgrund nach oben gedrückt wird, kommt es zu den Flutwellen, die uns als Tsunami bekannt sind. Um die Gefahrenpotentiale von Erdbeben besser einschätzen zu können, ist es wichtig, die genaue Lage der Bruchstelle zwischen den beiden verhakten Platten zu ermitteln.

Das ist Diplom Geophysikerin Kathrin Lieser und Prof. Dr. Ingo Grevemeyer vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel zusammen mit Wissenschaftlern des Helmholtz-Zentrums Potsdam Deutsches Geoforschungszentrum (GFZ) und der Universidad de Chile nun gelungen. Die Studie ist jetzt in der international renommierten Fachzeitschrift Geology erschienen.

Nur wenige Monate nach dem großen Erdbeben begab sich das Forschungsschiff SONNE auf eine kurzfristig geplante dreitägige Expedition, bei der insgesamt 30 Ozeanbodenseismometer auf dem Meeresboden entlang der chilenischen Küste ausgelegt wurden. Zusätzlich befanden sich Messgeräte des GFZ an Land der Küstengebiete.

„Nachbeben sind höchstwahrscheinlich immer dort aktiv, wo sie auch während des Hauptbebens auftraten. Deshalb kann man durch deren Vermessung auf den Ursprungsort des eigentlichen Bebens schließen“, sagt Geophysiker Prof. Dr. Ingo Grevemeyer vom GEOMAR.

Die flächenhafte Aufstellung der Seismometer zeigte deutliche Unterschiede in der Verteilung der seismischen Aktivität, mit einer Ballung von starken Beben im nördlichen Teil der Bruchfläche seewärts der Stadt Pichilemu. „Erstmals konnte seismische Aktivität entlang einer am Meeresboden auskeilenden Störungszone nachgewiesen werden. Diese Brüche werden oft mit der Generierung von Tsunamis in Verbindung gebracht“, erklärt Prof. Dr. Grevemeyer.

Bereits im Jahr 2008 untersuchten die Projekt-Antragsteller über sechs Monate hinweg mit einem Netz aus Ozeanbodenseismometern genau die Region, in der sich 2010 das Seebeben vor Chile ereignete. Die dort gewonnenen Messungen konnten als Vergleichsdaten für die aktuelle Studie genutzt werden. Die Erkenntnisse der Studie dienen dazu, Gefahrengebiete für Erdbeben oder Tsunamis genau definieren zu können.

Originalarbeit:
Lieser, K., I. Grevemeyer, D. Lange, E. Flueh, F. Tilmann, E. Contreras-Reyes (2014): Splay fault activity revealed by aftershocks of the 2010 Mw 8.8 Maule earthquake, central Chile. Geology, http://dx.doi.org/10.1130/G35848.1

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie