Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Souvenirs aus der Kinderstube des Sonnensystems

05.09.2012
Mineraloge der Universität Jena erforscht Staubteilchen vom Asteroiden „25143 Itokawa“

Es sind zwei ganz besondere „Mitbringsel“, die Prof. Dr. Falko Langenhorst von der Friedrich-Schiller-Universität Jena gerade per Post aus Japan bekommen hat: mit bloßen Augen eher zu erahnen als wirklich zu sehen, in einem metallischen Container verschlossen und gesichert, wie kostbare Schmuckstücke.


Fest verschraubt in einem Metallzylinder sind die zwei mikroskopisch kleine Staubkörnchen vom Asteroiden „25143 Itokawa“ nach Jena gereist, wo sie nun analysiert werden.

Foto: Jan-Peter Kasper/FSU

Die zwei winzigen Staubkörnchen, gerade einmal halb so dick wie ein menschliches Haar, sind weit gereist, bis sie auf dem Labortisch des Mineralogen angekommen sind – wobei die letzten wenigen tausend Kilometer von Japan nach Jena allerdings nur ein „Katzensprung“ waren. Denn die beiden Staubteilchen stammen vom Asteroiden „25143 Itokawa“. Bis November 2005 lagen sie noch auf der Oberfläche des Himmelskörpers. Dann landete die japanische Raumsonde „Hayabusa“ auf dem Asteroiden – eine Premiere in der Geschichte der Raumfahrt –, nahm Bodenproben und brachte sie über eine Distanz von mehr als 40 Millionen Kilometern mit zur Erde.

Als einer von wenigen Forschern weltweit hat Prof. Langenhorst jetzt von der japanischen Raumfahrtagentur JAXA zwei der kostbaren Bodenproben zur Verfügung gestellt bekommen, um sie untersuchen zu können. „Das ist eine große Ehre und zugleich eine Herausforderung“, freut sich der Inhaber des Lehrstuhls für Analytische Mineralogie der Mikro- und Nanostrukturen der Uni Jena.

Um die winzigen Partikel zu untersuchen, wird Falko Langenhorst aus diesen zunächst noch viel kleinere Stücke herausfräsen und diese mit einem Transmissionselektronenmikroskop untersuchen. „Wir wollen die chemische Zusammensetzung der Asteroidenminerale ermitteln und somit auch Rückschlüsse auf die Urprozesse unseres Sonnensystems ziehen“, erläutert der Forscher. Denn Asteroiden, wie Itokawa, geben den Wissenschaftlern Einblicke in die Kinderstube des Sonnensystems.

Im Asteroidengürtel zwischen Mars und Jupiter, wo auch Itokawa seine Bahnen zieht, ist die Zeit seit der Entstehung der Erde und der übrigen Planeten praktisch stehen geblieben. „Wie das übrige Sonnensystem hat sich der Asteroidengürtel vor etwa 4,5 Milliarden Jahren aus dem Sonnennebel gebildet“, sagt Prof. Langenhorst. Der Einfluss des Gasriesen Jupiter verhinderte wahrscheinlich, dass sich die dort kondensierte Materie zu einem eigenen Planeten zusammenballen konnte. „Bei den Asteroiden handelt es sich daher großenteils noch um die unveränderte Urmaterie unseres Sonnensystems.“

Und die erweckt den Anschein einer riesigen Geröllhalde: Mindestens eine halbe Million Gesteinsbrocken von wenigen Metern Größe bis zu einigen Hundert Kilometern im Durchmesser umrunden im Asteroidengürtel die Sonne. Da die allermeisten Brocken zu klein sind, reicht ihre Schwerkraft nicht aus, um den Himmelskörpern durch Rotation eine Kugelform zu geben, wie das bei den größeren Planeten der Fall ist. Asteroiden haben deshalb Ecken und Kanten, tragen Dellen und Beulen und sind zudem übersät mit Kratern. Das gilt auch für den rund 630 Meter langen und 250 Meter breiten „25143 Itokawa“, der ein wenig an eine Kartoffel erinnert.

Die Staubteilchen, die Prof. Langenhorst mit seinem Team nun im Jenaer Labor genauestens unter die Lupe nehmen werden, stammen aus der Region „Muses Sea“ in der Nähe des Südpols von Itokawa. In diesem vergleichsweise wenig zerklüfteten Gelände war Hayabusa vor fast sieben Jahren gelandet und hat die Proben entnommen. Mit den Ergebnissen ihrer Untersuchungen rechnen die Forscher der Universität Jena im Laufe des kommenden Jahres.

Kontakt:
Prof. Dr. Falko Langenhorst
Institut für Geowissenschaften der Friedrich-Schiller-Universität Jena
Burgweg 11, 07749 Jena
Tel.: 03641 / 948730
E-Mail: Falko.Langenhorst[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was macht Korallen krank?
08.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Neue Weltkarte zeigt Karstgrundwasserleiter
04.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik