Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmechanik im Erdkern

12.07.2017

Physiker der Universität Würzburg haben überraschende Eigenschaften des Metalls Nickel entdeckt. Diese könnten dabei helfen, bislang ungeklärte Rätsel um das Magnetfeld der Erde zu lösen.

Ohne Magnetfeld sähe das Leben auf der Erde ziemlich ungemütlich aus: Energiereiche kosmische Teilchen würden in großer Menge die Atmosphäre durchdringen und in den Zellen aller Lebewesen Schäden verursachen. In technischen Systemen würden sich Fehlfunktionen häufen, in Einzelfällen können elektronische Bauteile auch komplett zerstört werden.


Die unterschiedliche räumliche Anordnung der Atome im Eisen- und im Nickelgitter ist für das unterschiedliche physikalische Verhalten unter extremen Bedingungen verantwortlich.

Grafik: Michael Karolak


Die unterschiedliche räumliche Anordnung der Atome im Eisen- und im Nickelgitter ist für das unterschiedliche physikalische Verhalten unter extremen Bedingungen verantwortlich.

Grafik: Michael Karolak

Ungeachtet seiner hohen Bedeutung für das Leben auf der Erde ist bislang noch nicht im Detail geklärt, wie das Magnetfeld entsteht. Zwar existieren diverse Theorien über seinen Ursprung; diese sind aus Sicht vieler Experten allerdings nur unzureichend oder fehlerhaft.

Einen neuen Ansatz für eine mögliche Erklärung liefert eine Entdeckung Würzburger Physiker. Sie stellen ihre Studie in der aktuellen Ausgabe der Fachzeitschrift Nature Communications vor. Demnach könnte der Schlüssel für den Effekt in der besonderen Struktur des Elements Nickel verborgen sein.

Widerspruch zwischen Theorie und Realität

„Die gängigen Modelle für das Erdmagnetfeld arbeiten mit Werten für die elektrische und die thermische Leitfähigkeit der Metalle im Erdinneren, die mit der Realität nicht übereinstimmen können“, sagt Giorgio Sangiovanni, Professor am Institut für Theoretische Physik und Astrophysik der Universität Würzburg.

Er zeichnet zusammen mit seinem Doktoranden Andreas Hausoel und Postdoktorand Michael Karolak für die gerade veröffentlichte, internationale Kollaboration verantwortlich. Daran beteiligt sind auch Alessandro Toschi und Karsten Held von der TU Wien, mit denen Giorgio Sangiovanni eine enge langfristige Kooperation hat, sowie Wissenschaftler aus Hamburg, Halle (Saale) und Ekaterinburg in Russland.

6.300 Grad Celsius und ein Druck von etwa 3,5 Millionen bar herrschen am Erdmittelpunkt in einer Tiefe von gut 6.400 Kilometern. Die vorherrschenden Elemente, Eisen und Nickel, bilden unter diesen Umständen eine feste Metallkugel, den inneren Erdkern. Um diese Kugel herum befindet sich der äußere Erdkern, wobei Eisen und Nickel dort zähflüssig sind. In dieser elektrisch leitenden Flüssigkeit können sich in der Eisenschmelze durch Fließbewegungen elektrische Ströme verstärken und Magnetfelder ausbilden – so jedenfalls die gängige Geodynamo-Theorie. „Diese ist aber nicht widerspruchsfrei“, sagt Giorgio Sangiovanni.

Bandstruktur-induzierte Korrelationseffekte

„Der Grund dafür ist, dass Eisen sich zwar bei Raumtemperatur wegen seiner großen effektiven Elektron-Elektron-Wechselwirkung deutlich von gewöhnlichen Metallen, wie beispielsweise Kupfer oder Gold, unterscheidet. Es ist stark korreliert“, sagt er. Die Effekte der elektronischen Korrelation werden aber bei den extremen Temperaturen des Erdkerns deutlich geschwächt, und konventionelle Theorien sind anwendbar. Diese Theorien sagen dann für Eisen eine viel zu große thermische Leitfähigkeit voraus, mit der der Geodynamo nicht funktionieren würde.

Nickel verhält sich anders. „Wir haben bei Nickel eine deutliche Anomalie bei sehr hohen Temperaturen entdeckt“, sagt der Physiker. „Nickel ist auch ein stark korreliertes Metall. Die Ursache dafür ist nicht wie bei Eisen die Elektron-Elektron-Wechselwirkung alleine, sondern liegt hauptsächlich in der besonderen Bandstruktur von Nickel. Wir geben dem Effekt den Namen bandstruktur-induzierte Korrelation.“ Die Bandstruktur eines Festkörpers ist nur von den geometrischen Anordnung der Atome im Gitter und der Atomsorte vorgegeben.

Eisen und Nickel im Erdinneren

„Bei Raumtemperatur ordnen sich Eisenatome so an, dass die jeweiligen Atome an den Ecken eines gedachten Würfels sitzen mit einem zentralen Atom in der Würfelmitte, in einer sogenannten bcc-Gitterstruktur“, erklärt Andreas Hausoel. Steigen Temperatur und Druck, verändert sich diese Struktur allerdings: Die Atome rücken enger aneinander und bilden ein hexagonales Gitter – Physiker sprechen von einem hcp-Gitter, wodurch Eisen seine korrelierten Eigenschaften größtenteils verliert.

Anders aber Nickel: „Bei diesem Metall sitzen die Atome schon im Normalzustand so dicht gepackt in der Würfelstruktur wie möglich. Sie verändern diese Anordnung auch dann nicht, wenn Temperatur und Druck sehr groß werden“, so Hausoel. Nur das Zusammenspiel dieser geometrischen Stabilität und der Geometrie entstammenden elektronischen Korrelationen machen das ungewöhnliche physikalische Verhalten von Nickel unter extremen Bedingungen erklärbar. Obwohl bisher von Geophysikern vernachlässigt, scheint also Nickel eine wichtige Rolle für das Erdmagnetfeld zu spielen.

Entscheidender Tipp aus der Geophysik

Die Geschehnisse im Erdkern sind eigentlich nicht Forschungsschwerpunkt an den Lehrstühlen für theoretische Festkörperphysik der Universität Würzburg. Vielmehr konzentrieren sich Sangiovanni, Hausoel und ihre Kollegen auf die Eigenschaften stark korrelierter Elektronen bei tiefen Temperaturen. Sie interessieren sich für Quanten- und sogenannte Vielteilchen-Effekte, die für die nächste Generation der Datenverarbeitung und der Energiespeicherung von Interesse sind. Supraleitung und Quantencomputer lauten die dazu gehörigen Stichworte.

Daten aus Experimenten kommen bei dieser Art der Forschung nicht zum Einsatz. „Wir nehmen die bekannten Eigenschaften von Atomen als Input, beziehen die Erkenntnisse der Quantenmechanik mit ein und versuchen damit, das Verhalten großer Atomverbünde zu berechnen“, sagt Hausoel. Weil diese Berechnungen extrem aufwendig sind, müssen die Wissenschaftler dabei auf externe Unterstützung setzen – den Hochleistungsrechner SUPERMUC am Leibniz-Rechenzentrum in Garching.

Und wie kam dabei der Erdkern ins Spiel? „Wir wollten schauen, wie stabil die neuartigen magnetischen Eigenschaften von Nickel sind und haben dabei gefunden, dass sie auch extrem hohe Temperaturen überleben“, sagt Hausoel. Diskussionen mit Geophysikern und weitere Untersuchungen von Eisen-Nickel Legierungen haben ergeben, dass diese Entdeckung für die Vorgänge im Erdkern relevant sein könnte.

Hausoel A., et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions. Nat. Commun. 8, 16062 doi:10.1038/ncomms16062 (2017)

Kontakt

Prof. Dr. Giorgio Sangiovanni, T: +49 (0) 931 31-89100, sangiovanni@physik.uni-wuerzburg.de

M.Sc. Andreas Hausoel, T: +49 (0) 931 31-88925, andreas.hausoel@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neue Einblicke in das 2004 Sumatra-Erdbeben
14.11.2017 | Technische Universität München

nachricht Folgen des Klimawandels: Oder warum wird das Wasser unter Borkum überwacht?
14.11.2017 | Leibniz-Institut für Angewandte Geophysik

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte