Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie hoch liegt ein Ort? Die Verbindung zweier Uhren sagt’s mir

17.09.2013
Forscher aus Garching und Braunschweig transportieren Frequenzen hochgenau über fast 2000 km – wichtig u. a. für die Geodäsie

Wie hoch liegt ein Ort über „Normalnull“? Und wo genau liegt überhaupt „Normalnull“? Ein Ziel der Geodäten ist es, das auf einen Zentimeter genau zu ermitteln, wobei herkömmliche Vermessungs-verfahren oder GPS-Technik über Satelliten an ihre Grenzen stoßen.


Sie ähnelt einem ausgebeulten Fußball: Das ist die Erde, wenn man sie als Geoid darstellt, also die tastsächliche Schwerkraftverteilung zeigt. Die Höhe der „Beulen“, die mit dem Schwerefeld der Erde zu tun haben, sind hier vom Satelliten Goce ermittelt worden. Die Daten sind zwar präzise, was die jeweilige Höhe der „Buckel“ angeht, aber die seitliche Auflösung beträgt mehrere Kilometer. Will man die Höhe von kleineren Strukturen und Orten auf der Erde wissen, kann man in Zukunft Frequenzvergleiche zwischen optischen Atomuhren einsetzen. Der Transport der Frequenz gelang jetzt über rund 2000 km Entfernung mit einer Auflösung, die nur 4 mm Höhendifferenz entspricht. (Abb.: ESA)

Hier bieten optische Atomuhren einen neuen Ansatz, denn der Gang einer Uhr wird durch das Gravitationsfeld des jeweiligen Ortes beeinflusst. Dieser bekannte, aber winzige Effekt wurde in den letzten Jahren mit zwei optischen Uhren innerhalb weniger Minuten Messzeit immer empfindlicher nachgewiesen. Diese Uhren standen jedoch in demselben Institut. Jetzt dürfen auch rund 2000 km zwischen ihnen liegen.

In kommerziellen Glasfasern und mithilfe ausgeklügelter Verstärkertechnik wird die Frequenz der einen Atomuhr bis zur anderen transportiert und dort verglichen. Durch ein hochempfindliches Interferometrieverfahren gelingt dies auf 19 Stellen hinter dem Komma genau. Die Ergebnisse der erfolgreichen Kooperation zwischen dem Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Physikalisch-Technischen Bundesanstalt (PTB) sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht. Sie bilden auch eine wichtige Basis für einen jetzt beantragten Sonderforschungsbereich der PTB und der Universität Hannover mit der Universität Bremen.

Beim Brückenbau kann so einiges schiefgehen. Die Bewohner des deutschen und des schweizerischen Teiles von Laufenberg freuten sich schon auf die neue Hochrheinbrücke, als man stutzig wurde: Die aufeinander zuwachsenden Brückenteile unterschieden sich in der Höhe um ganze 54 Zentimeter. Ein peinlicher Fehler: Da hatte jemand den bekannten Höhenunterschied von 27 Zentimetern in den Höhennetzen der Schweiz und Deutschlands falsch in die Rechnung eingebaut, sie somit verdoppelt und nicht getilgt. Diese Höhendifferenz existierte, weil die Deutschen sich bei solchen Berechnungen auf die Meereshöhe der Nordsee beziehen, die Schweizer dagegen auf die Meereshöhe des Mittelmeeres. Normalnull ist also nicht gleich Normalnull.

Um solche Fehler in Zukunft auszuschließen, würden die Geodäten gerne das Normalnull neu berechnen, und zwar auf der Grundlage der Schwerkraft der Erde. Ihr Ziel ist es, das sogenannte Geoid der Erde, also die tatsächliche Schwerkraftverteilung, auf wenige Zentimeter genau zu ermitteln. Da kommen die optischen Atomuhren, die seit einigen Jahren von Physikern entwickelt werden, genau richtig. Denn sie können erstmals eine Frequenz so genau realisieren, dass selbst die kleinen Frequenzabweichungen, die von einigen Zentimetern Höhenunterschied verursacht werden, auffallen.

Dahinter steckt Einsteins Allgemeine Relativitätstheorie, die sogenannte Gravitations-Rotverschiebung: Wenn eine Uhr weiter von der Erde entfernt ist, sich also in einem schwächeren Schwerefeld befindet, läuft für sie die Zeit tatsächlich etwas schneller ab. Für einen Höhenunterschied von einem Meter ändert sich der Gang (also die Frequenz) einer Uhr um 1 × 10–16.

Einiges ist auf diesem Gebiet schon geforscht worden: Da hat man beispielsweise Atomuhren im Flugzeug über die halbe Erde geflogen – und hinterher tatsächlich festgestellt, dass ihre Zeit geringfügig anders abgelaufen war als die einer Atomuhr auf der Erde. Und vor drei Jahren stellten Chou et al. (Science 2010) zwei optische Aluminium-Uhren in benachbarten Laboren mit 33 cm Höhenunterschied auf – und konnten tatsächlich den Einfluss dieser kleinen Höhendifferenz auf die Frequenzen der beiden Uhren messen.

„Aber wie messe ich die Höhendifferenz, also diesen Frequenzunterschied, wenn die beiden Uhren nicht nebeneinander stehen? Sprich: Wie stelle ich die Verbindung her zu einer zweiten Uhr, die dort steht, wo eine Höhe so genau gemessen werden muss?“ fragt Gesine Grosche, Physikerin bei der PTB. Um eine Antwort auf diese Frage zu finden, haben sie und ihre Kollegen vom Max-Planck-Institut für Quantenoptik in Garching in den letzten Jahren erforscht, wie man derartige „Präzisionsfrequenzen“, wie sie von einer optischen Atomuhr erzeugt werden können, auf die Reise schicken kann. Nachdem sie im letzten Jahr im Science-Magazin berichten konnten, dass ihnen ein Frequenzvergleich über die 920 km lange Strecke zwischen dem MPQ und der PTB gelungen war, haben sie jetzt diese Strecke verdoppelt – und sogar noch bessere Stabilitäten erzeugt.

„Wir können also sehr schnell auf die benötigten genauen Werte kommen, ohne lange messen zu müssen“, erläutert Stefan Droste vom MPQ. „Die Gesamtmessunsicherheit liegt bei nur 4 × 10–19, das entspräche 4 mm Höhenunterschied, und wir erreichen diese Auflösung nach nur 100 Sekunden.“ Solche Werte machen die neue Technik für die praktische Anwendung höchst interessant. „Prinzipiell können jetzt optische Uhren in weit entfernten Forschungsinstituten quasi ‘zusammengeschaltet‘ und für alle Zwecke genutzt werden, für die man so ‚gute‘ Frequenzen braucht“, erläutert Ronald Holzwarth vom MPQ.

Eine erste Anwendung für die Grundlagenforschung ist auch gerade dokumentiert worden, nämlich im Juni in Physical Review Letters: MPQ-, PTB- und französische Forscher haben diesen Weg genutzt, um spektroskopische Untersuchungen an Wasserstoff durchzuführen, die für die grundlegende Frage wichtig sind, ob die Quantenmechanik die Welt tatsächlich gut beschreibt.

Und jetzt stehen also die Geodäten quasi vor der Tür. „Wir arbeiten gemeinsam an dem Antrag für einen Sonderforschungsbereich zusammen mit den Universitäten Hannover und Bremen“, sagt Gesine Grosche. Außerdem könnte diese Forschung auch für radioastronomische Untersuchungen eingesetzt werden. Die Kollegen in Australien wollen dafür Frequenzen nicht über 2000 km, sondern etwa 4000 km vergleichen, was die Sache natürlich noch komplizierter macht. Aber Gesine Grosche ist optimistisch: „Nachdem wir jetzt die Grundlagen dafür gelegt haben, wird das wohl auch zu schaffen sein!“

Und auch die langjährige gute Zusammenarbeit zwischen PTB und MPQ auf diesem Gebiet wird natürlich weitergehen. Vielleicht wird einmal der Höhenunterschied zwischen Braunschweig und Garching auf die große Entfernung hinweg gemessen werden – natürlich ebenfalls über die Glasfaserstrecke und mithilfe eines Uhrenvergleichs.

es/ptb

Ansprechpartner:
Stefan Droste, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Telefon: (089) 32905-266, E-Mail: stefan.droste@mpq.mpg.de

Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.34 Frequenzübertragung mit Glasfasern, Telefon: (0531) 592-4340, E-Mail: gesine.grosche@ptb.de

Die aktuelle wissenschaftliche Veröffentlichung:
S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, R. Holzwarth: Optical Frequency Transfer over a single-span 1840-km Fiber Link. Phys. Rev. Lett. 111, 110801 (2013)

http://prl.aps.org/abstract/PRL/v111/i11/e110801

Die drei anderen erwähnten Veröffentlichungen:
A. Matveev, C. G. Parthey, K. Predehl, .J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, T.W. Hänsch: Precision Measurement of the Hydrogen 1S-2S Frequency via a 920-km Fiber Link. Phys. Rev. Lett 110, 230801 (2013)http://prl.aps.org/abstract/PRL/v110/i23/e230801

K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz: A 920 km Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science, 27. April 2012 https://www.sciencemag.org/content/336/6080/441.abstract

T.C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland: Optical Clocks and Relativity. Science 329, 1630-1633 (2010) http://www.sciencemag.org/content/329/5999/1630.abstract

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie