Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erloschene Tiefseevulkane als Erdbebenstopper

30.09.2015

Im Norden Chiles erwarten Experten schon länger eines der nächsten Mega-Erdbeben. Doch als im Frühjahr 2014 in der nordchilenischen Stadt Iquique die Erde schwankte, waren Stärke und räumliche Ausdehnung des Bebens deutlich kleiner als befürchtet. Geologen des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel und des Kieler Exzellenzclusters „Ozean der Zukunft“, des Institute of Marine Sciences (CSIC) in Barcelona (Spanien) und der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) veröffentlichen jetzt im internationalen Fachjournal Nature Communications eine mögliche Erklärung.

Chile gehört zu den am stärksten von Erdbeben gefährdeten Ländern der Erde. Deshalb war niemand überrascht, als Ende März bis Anfang April 2014 eine Reihe von Erdstößen die Region rund um die nordchilenische Stadt Iquique erschütterten.


Die seismische Lücke in Nordchile mit dem Iquique-Erdbeben 2014.

Grafik: GEOMAR, based on GEBCO world map, www.gebco.net

Das Hauptbeben am 1. April erreichte immerhin eine Momenten-Magnitude von 8,1 und löste einen Tsunami aus. Doch Experten waren überrascht, dass das Beben nicht noch stärker ausfiel und räumlich sehr begrenzt blieb. Forscher des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel und des Exzellenzclusters „Ozean der Zukunft“, der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) sowie des Institute of Marine Sciences (CSIC) in Barcelona (Spanien) haben jetzt eine mögliche Erklärung für dieses Phänomen gefunden. Sie veröffentlichen ihre Ergebnisse in dem internationalen Fachjournal Nature Communications.

Der Grund für die große Erdbebenhäufigkeit in Chile findet sich direkt vor der Küste. Dort schiebt sich die ozeanische Nazca-Platte, eine von mehreren Erdplatten im pazifischen Raum, unter die Südamerikanische Platte. Dabei entstehen Spannungen, die sich früher oder später in Erdstößen entladen.

„Im Norden Chiles erstreckt sich allerdings eine etwa 550 Kilometer lange Zone, in der es seit einem starken Erdbeben im Jahr 1877 zu keiner größeren Katastrophe mehr gekommen ist“, erklärt der Erstautor der aktuellen Studie, Dr. Jacob Geersen (GEOMAR/Ozean der Zukunft). „In dieser seismischen Lücke erwarten Experten das nächste große Erdbeben und kurzfristig dachte man, das Beben am 1. April sei dieses erwartete Megabeben. Doch es betraf nur den mittleren Abschnitt der Lücke und blieb deutlich unter der erwarteten Magnitude von bis zu 9,0“, sagt Dr. Geersen.

Um die Ursache für die geringe Stärke des 2014 Iquique-Erdbebens zu verstehen, haben sich Dr. Geersen und seine Kollegen die Topographie des Meeresbodens vor Nordchile sowie seismische Daten, die die Struktur des Untergrundes zeigen, angesehen. Die seismischen Daten hatte die BGR schon 1995 im Rahmen eines Forschungsprojektes mit dem Namen „Crustal Investigations off- and on-shore Nazca/Central Andes (CINCA)“ gesammelt. „Dabei zeigte sich, dass der Meeresboden auf der Nazca Platte in der betroffenen Region nicht eben ist, sondern dass dort zahlreiche, teilweise mehrere tausend Meter hohe erloschene Vulkankegel stehen“, beschreibt Co-Autor César R. Ranero, ICREA Research Professor am Institut of Marine Sciences (CSIC) in Barcelona, die Situation.

Diese „Seamounts“ genannten Unterwasserberge werden zusammen mit der Nazca-Platte unter die Südamerikanische Platte geschoben. „In den seismischen Daten können wir deutlich mehrere ehemalige Seamounts erkennen, die jetzt an der Grenzfläche zwischen beiden Platten liegen und die diese Grenzfläche sowie die darüber liegende Südamerikanische Platte deformieren“, sagt Dr. Geersen. Die bei dieser Deformierung entstandenen Störungen sorgen dafür, dass sich weniger Spannung aufbauen kann. „Außerdem haben die Seamounts die räumliche Ausbreitung des Bruchs, der bei dem Iquique-Beben entstand, wahrscheinlich aufgehalten“, so Dr. Geersen.

Die Gefahr eines Megabebens in der seismischen Lücke vor Nordchile ist damit nicht komplett gebannt. „Ein Teil der aufgestauten Spannung hat sich aufgrund des 2014 Iquique Bebens allerdings schon abgebaut. Aber Berechnungen ergeben im nördlichen und südlichen Teil der seismischen Lücke zusammen immer noch das Potenzial für ein Beben mit einer Magnitude größer als 8,5“, sagt der Kieler Geologe. Deshalb beobachten Wissenschaftler aus der ganzen Welt die Region weiter sehr aufmerksam.

Ende 2015 wird auch ein Team des GEOMAR mit dem deutschen Forschungsschiff SONNE vor der Küste Chiles im Einsatz sein, um hochpräzise Vermessungseinrichtungen am Meeresboden zu platzieren, die auch kleine Bewegungen des Untergrundes registrieren. „Wir können Erdbeben weder verhindern noch genau vorhersagen. Aber je mehr wir über sie lernen, desto besser kann man Risiken einschätzen und entsprechende Vorkehrungen treffen“, resümiert Dr. Geersen.

Originalarbeit:
Geersen, J., C. R. Ranero, U. Barckhausen, C. Reichert (2015): Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area. Nature Communications, https://dx.doi.org/10.1038/ncomms9267

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.ozean-der-zukunft.de Der Exzellenzcluster „Ozean der Zukunft“

Andreas Villwock |

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?
17.01.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten