Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem "atmosphärischen Waschmittel" auf der Spur

13.07.2006
Ergebnisse erster Langzeitmessungen zur Selbstreinigung der Atmosphäre in "Nature"

Die Atmosphäre steuert ihre Reinigung wesentlich effizienter als bisher angenommen. Das berichten Wissenschaftler des Forschungszentrums Jülich und des Deutschen Wetterdiensts (DWD) in der aktuellen Ausgabe des Fachmagazins "Nature". Sie hatten fünf Jahre lang die Menge des wichtigsten "Waschmittels" in der Atmosphäre bestimmt: des Hydroxyl-Radikals (OH-Radikal). Dieses ist ein hochreaktives Molekül, das den Abbau der meisten Schadstoffe startet und dabei auch selbst verbraucht wird. Schwankende Schadstoffmengen wirken sich aber kaum auf die "Waschmittelmenge" in der Luft aus, wie die Forscher nun feststellten. Der einzige messbare Einfluss ist die Sonnenstrahlung.

"Das OH-Radikal ist an tausenden Reaktionen in der Atmosphäre beteiligt, die es bilden können oder zerstören. Wir hatten daher erwartet, dass Schwankungen der Schadstoffmenge sehr stark die OH-Konzentration bestimmen, also bei hoher Schadstoffkonzentration wenig OH zu messen", sagt Franz Rohrer vom Jülicher Institut für Chemie und Dynamik der Geosphäre. Umso erstaunter waren die Forscher nun, dass das Auf und Ab der Waschmittelmenge nur mit der Intensität der Sonnenstrahlung zusammenhängt. "Das bedeutet allerdings nicht, dass nur die Sonne die OH-Konzentration steuert", erläutert Rohrer. "Das OH-Radikal selbst scheint seine chemische Umgebung so zu beeinflussen, dass wir andere Einflüsse nicht sehen."

In Klimamodellen berücksichtigen viele Forscher derzeit noch verschiedenste Prozesse und Einflussgrößen, um die OH-Konzentration und damit den Abbau der Schadstoffe zu berechnen. Jeder einzelne dieser Prozesse ist im Prinzip gut untersucht. Ihr bisher angenommenes Zusammenspiel verfälscht jedoch das reale Bild, wie die neuen Messdaten zeigen. "Wir haben die besten Ergebnisse erzielt, wenn wir nur die solare Einstrahlung zur Vorhersage der OH-Konzentration verwendet haben", berichtet Rohrer, "nun müssen wir herausfinden, wie das komplexe Zusammenspiel hinter dem einfachen Zusammenhang aussieht: Beeinflussen sich die bekannten Reaktionen des OH-Radikals anders als bisher zugrunde gelegt, oder gibt es noch unbekannte Prozesse?"

Antworten darauf könnten sowohl Rechenmodelle an Supercomputern wie dem Jülicher JUMP als auch weitere Langzeitmessungen liefern. "Es gibt zwar Daten aus anderen Regionen, die Messungen liefen dort aber höchstens einige Wochen" weiß Harald Berresheim vom DWD. Am Meteorologischen Observatorium des DWD in Hohenpeißenberg in Süddeutschland messen die Forscher seit 1999 kontinuierlich die OH-Konzentration. "Das ist weltweit einmalig", so Berresheim. Die Schwierigkeit dabei ist, dass OH-Radikale fast sofort mit jedem anderen Molekül reagieren: Sie werden bei Sonneneinstrahlung erzeugt, sind dann aber weniger als eine Sekunde stabil und daher bloß in winzigen Spuren in der Luft vorhanden. Um diese Kleinstmengen zu messen, haben die Wissenschaftler in Hohenpeißenberg eine hochempfindliche Analytik aufgebaut, deren zuverlässiger Betrieb über so eine lange Zeit allein schon eine Herausforderung war. Ergänzende Messungen anderenorts sollen zeigen, ob gleiche Ökosysteme wie Ozeane oder ausgedehnte Waldflächen gleiche Abhängigkeiten der OH-Menge von der Sonnenstrahlung aufweisen. Das würde die Modellierung des zentralen Moleküls in der Atmosphärenchemie vereinfachen.

Die Langzeitmessungen ergaben neben der einfachen Abhängigkeit des OH-Radikals noch ein zweites Ergebnis. "Forscher diskutieren seit einigen Jahren, ob die Atmosphäre die global steigende Luftverschmutzung nicht mehr verkraftet und daher die Menge des OH-Radikals abnimmt", sagt Rohrer, "Wir sehen aber zum Glück bisher keinen Hinweis darauf."

Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation, F. Rohrer and H. Berresheim, Nature, Bd. 442, S. 184-187, News&Views, Bd. 442, S. 145f

Pressekontakt:
Dr. Barbara Schunk, Wissenschaftsjournalistin, Öffentlichkeitsarbeit, Forschungszentrum Jülich
Tel. 02461 61-8031, Fax 02461 61-4666,
E-Mail: b.schunk@fz-juelich.de
Dr. Angela Lindner, Leiterin Öffentlichkeitsarbeit, Forschungszentrum Jülich, 52425 Jülich

Tel. 02461 61-4661, Fax 02461 61-4666, E-Mail: a.lindner@fz-juelich.de

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/portal/
http://www.fz-juelich.de/icg/icg-ii/startseite/
http://www.nature.com/index.html

Weitere Berichte zu: DWD Langzeitmessung Molekül OH-Konzentration OH-Radikal Sonnenstrahlung

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unter hohem Druck elastisch: Bayreuther Forscher erschließen Zusammensetzung des Erdmantels
30.03.2017 | Universität Bayreuth

nachricht Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE