Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurilen Ochotskisches Meer Experiment - KOMEX

29.06.2004


Zum allerersten Mal hat ein nicht-russisches Forschungsschiff die Genehmigung für eine wissenschaftliche Expedition in die russischen Hoheitsgewässer des Ochotskischen Meeres - ehemals militärisches Sperrgebiet - erhalten.

... mehr zu:
»CO2 »IFM-GEOMAR »KOMEX »Kurilen »Ochotskische

Die Expedition auf dem deutschen Forschungsschiff Sonne wird vom Kieler Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) durchgeführt. Vom 22.07. - 15.09.04 wird die FS Sonne im Ochotskischen Meer und am Kurilen Inselbogen unterwegs sein und dabei - auch dies eine Premiere für ein ausländisches Forschungsschiff - den Hafen von Wladiwostok anlaufen.

Teilnehmen werden elf Wissenschaftler des IFM-GEOMAR in Kiel und des Alfred-Wegener-Institutes in Bremerhaven sowie dreizehn russische Wissenschaftler des P.P.Schirschow-Institutes für Ozeanologie der russischen Akademie der Wissenschaften in Moskau und des Pazifischen Ozeanologischen Institutes der russischen Akademie der Wissenschaften in Wladiwostok.


Auf dem Expeditionsplan stehen umfangreiche ozeanographische, biologische, geologische und vulkanologische Untersuchungen, die im Rahmen des Forschungsprojekts KOMEX durchgeführt werden sollen.

KOMEX (Kurilen Ochotskisches Meer Experiment)ist ein groß angelegtes Forschungsprojekt, koordiniert wird es vom IFM-GEOMAR in Kiel und vom P.P. Schirschow-Institut für Ozeanologie der russischen Akademie der Wissenschaften in Moskau. Neben den genannten sind eine Reihe weiterer russischer Institute in Moskau, St. Petersburg, Wladiwostok und Petropawlowsk-Kamtschatskij an dem Projekt beteiligt. In einem interdisziplinären Forschungsansatz untersucht das KOMEX-Team die Funktionsweise des Systems ’Ochotskisches Meer’. Das Bundesministerium für Bildung und Wissenschaft (BMBF) der Bundesrepublik Deutschland und das Ministerium für Industrie, Wissenschaft und Technologie der Russischen Föderation unterstützen das Projekt schon seit dem 01.01.1998.

Die Daten und die Proben die auf der SO178 KOMEX Expedition gewonnen werden, bilden die Grundlage für zahlreiche Diplom- und Doktorarbeiten, die in Russland und Deutschland geschrieben werden. Damit wird nicht zuletzt ein ganz wesentlicher Beitrag zur Förderung des wissenschaftlichen Nachwuchses sowohl in Russland als auch in Deutschland geleistet.

Wissenschaftlicher Hintergrund:

Das Ochotskische Meer ist mit einer Fläche, die Nord- und Ostsee etwa gemeinsam einnehmen, nach dem Südchinesischen Meer das zweitgrößte Randmeer des Pazifischen Ozeans. Es wird im Osten und Süden durch die Halbinsel Kamtschatka und den Kurilen-Inselbogen begrenzt. Im Ochotskischen Meer treffen eine Vielzahl geologischer Phänomene aufeinander, die es zu einem einzigartigen Forschungsgebiet macht.

Die Erdkruste unter dem Ochotskischen Meer ist seismisch besonders aktiv, da dort die Pazifische Platte unter dem Kurilen-Inselbogen versinkt und sich entlang von Sachalin die Ochotskische- und die Amur-Platte aneinander reiben. Eine Folge dessen sind zahlreiche Erdbeben und Vulkanausbrüche in der Region.

Eine weitere Folge der tektonischen Prozesse ist das Sprudeln unzähliger Methanquellen am Meeresboden. Das Ochotskische Meer ist somit eine bedeutende Quellenregion für den Eintrag klimarelevanter Gase in die Atmosphäre (z.B. CH4, CO2), durch Methanquellen am Meeresboden sowie durch Vulkanausbrüche. Zudem weist es die höchste potentielle Methanproduktionsrate in der nördlichen Hemisphäre auf und besitzt ein großes Vorkommen an Gashydraten. Seine saisonale Eisbedeckung reguliert in besonderer Weise den Gasaustausch mit der Atmosphäre.

Andererseits produziert das Ochotskische Meer während der Warmzeiten große Mengen an Plankton und stellt somit eine Hochproduktionszone dar. Dies ist besonders interessant, da in Hochproduktionsgebieten der Atmosphäre CO2 entzogen wird. Vor allem im Hinblick auf den jüngsten anthropogen verursachten CO2-Anstieg und Treibhauseffekt ist die Abschätzung der Möglichkeit eines natürlichen Abbaus von CO2 von großer Bedeutung. Damit besitzt das Ochotskischen Meer eine Schlüsselrolle für die Entwicklung des globalen Klimas.

Weiterhin hat das Ochotskische Meer, ähnlich wie die Norwegisch-Grönländische See für den Atlantik, eine herausragende Bedeutung als mögliche Quelle für die Bildung von Tiefenwasser im Pazifischen Ozean. Ihm käme damit eine Steuerungs- und Kontrollfunktion für die Wassermassenzirkulation und Nährstoffverteilung im Pazifik zu. Eine weitere Besonderheit des Ochotskischen Meeres ist das ungewöhnlich häufige Auftreten der Radiolarienart Cycladophora davisiana. Radiolarien sind einzellige Lebewesen, die in unterschiedlichen Wassertiefen leben und sich von organischem Material ernähren. Cycladophora davisiana wurde in solchen Größenordnungen wie im Ochotskischen Meer bisher nur in eiszeitlichen Sedimenten gefunden.

All diese Besonderheiten deuten darauf hin, dass die heutigen Verhältnisse im Ochotskischen Meer denen eines eiszeitlichen Ozeans sehr ähneln könnten. Doch die KOMEX-Untersuchungen können nicht nur helfen, die Vergangenheit besser zu verstehen, sie liefern auch wichtige Daten für die Modellierung der heutigen Klimaentwicklung.

AP: Dr. Nicole Biebow, Tel: 0431-6001415, Email: nbiebow@ifm-geomar.de

Uta Deinet | idw
Weitere Informationen:
http://www.ifm-geomar.de
http://www.geomar.de/projekte/komex

Weitere Berichte zu: CO2 IFM-GEOMAR KOMEX Kurilen Ochotskische

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics