Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

unglaublicher Druck - oder: Megabar in der Hosentasche

21.06.2002


Dr. Dubrovinsky zeigt eine geöffnete Diamantstempelzelle, mit deren Hilfe Proben unter Druckbedingungen, wie sie im Erdkern herrschen, untersucht werden können. Die zwei Scheiben aus sehr hitzebeständigem Metall werden miteinander verschraubt.


Aus der Hosentasche auf die Hand: Eine Miniatur-Diamantstempelzelle, mit deren Hilfe Proben unter Druckbedingungen, wie sie im Erdkern herrschen, untersucht werden können


Temperaturen und Drücke wie im Erdmittelpunkt sollen erzeugt werden

Bayreuth (UBT). Ein einmaliges Meßsystem, mit dem mit unglaublich hohen Drücken und Temperaturen die Vorgänge im metallischen Erdkern und im tieferen Erdmantel im Labor nachgeahmt werden, wird jetzt im Bayerischen Geoinstitut der Universität Bayreuth aufgebaut. Dr. Leonid Dubrovinsky, Akademischer Oberrat an diesem Forschungsinstitut, wurde dafür von der Deutschen Forschungsgemeinschaft (DFG) jetzt eine Sachbeihilfe von mehr als einer halben Million Euro gewährt.

Im Bayerischen Geoinstitut werden solche Untersuchungen bereits jetzt sehr erfolgreich bei Drücken bis ca. 250.000 atm (entsprechend einer Erdtiefe von ca. 700 km) und hohen Temperaturen in großen Pressen durchgeführt. Mit Hilfe der von Dr. Dubrovinsky weiterentwickelten Diamantstempeltechnik mit Laserheizung können dagegen Drücke bis 2 Mill. Atm bei Temperaturen von mehreren tausend Grad erreicht werden, und damit auch die Bedingungen selbst am Erdmittelpunkt (in 6370 km Tiefe mit einem Druck von 3,6 Mill. atm - etwa gleich 3,6 Megabar - und einer Temperatur um 5000 °C) erzeugt werden. Diese sehr handlichen Höchstdruckpressen (daher "Megabar in der Hosentasche") werden durch die technischen Mitarbeiter in der zentralen Universitäts- und der Institutswerkstatt hergestellt - nur sie sind in der Lage, bei den sehr schwierig zu bearbeitenden Materialien noch die nötige Präzision zu bringen.

Da Druck gleich Kraft pro Fläche ist, kann man solche extreme Drücke nur durch eine Verkleinerung der Fläche erzielen - das heißt, zwei Diamantspitzen drücken aufeinander, und die winzige Probe (Durchmesser unter 0,1 mm) liegt dazwischen. Um an solchen kleinen Proben noch geowissenschaftliche Aussagen über Materialeigenschaften machen zu können und die Diamanten zu durchstrahlen, wird extrem brilliantes Röntgenlicht benötigt. Die Strahlung wird mit einer "Röntgenoptik" (einem System von Hohlspiegeln, die Röntgenlicht reflektieren und fokussieren können) auf die Probe gelenkt und gibt in Form des Beugungsmusters Auskunft über die Kristallstrukturen, ihre Dichte und thermische wie elastische Eigenschaften. Zusätzlich werden die Proben mit spektroskopischen Verfahren (Raman- und Mössbauer-Spektroskopie) untersucht, um möglichst viele chemische und physikalische Eigenschaften zu bestimmen.

Dr. Dubrovinsky ist zuversichtlich: "Wir werden ein neues Fenster aufstoßen und tiefer in die Erde hineinschauen können als je zuvor."

Jürgen Abel M. A. | idw

Weitere Berichte zu: Megabar Temperatur

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften