Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abraumhalden als Rohstofflager für Kupfer und Baustoffe: Neues deutsch-polnisches Projekt NOMECOR

01.11.2016

Kupfer und andere Nichteisenmetalle können im Bergwerk nicht vollständig abgebaut werden, auch bei der folgenden metallurgischen Aufbereitung bleibt ein Teil der Wertmetalle übrig. Die Rückstände werden auf Abraumhalden gelagert. Das neue deutsch-polnische Forschungsprojekt NOMECOR hat die beiden Ziele, sowohl die Metalle zurückzugewinnen als auch die mineralischen Haldenbestandteile für die Herstellung von Zement nutzbar zu machen. Das Forschungsprojekt wird durch das BMBF für drei Jahre mit ca. 500.000 Euro gefördert. Koordiniert wird es durch das Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) am HZDR sowie das polnische Institut für Nichteisen-Metallurgie (IMN).

„Durch das Projekt soll der Zugang zum volkswirtschaftlich wichtigen Massenmetall Kupfer verbessert werden“, sagt Projektkoordinator Dr. Stefan Dirlich vom Freiberger Helmholtz-Institut. Kupfer ist teuer und begehrt, es wird für elektrische Leitungen und Maschinen gebraucht oder für Legierungen, wie Messing oder Bronze, eingesetzt. Der Abbau wird aber immer schwieriger, weil die Metallgehalte in den Erzen heutzutage sehr niedrig sind.


Die Biotechnologen am Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) entwickeln Bio-Verfahren mit Mikroorganismen, um Metalle aus natürlichen Erzen herauszulösen.

HZDR/ Sander Münster

In Punkto Nachhaltigkeit strebt das Projekt gleich mehrere Ziele an: mehr Ressourceneffizienz durch Recycling der Metalle aus Abraumhalden und Rückgewinnung natürlicher Flächen durch Haldenrückbau. Beteiligt an dem Projekt sind auch das Karlsruhe Institut für Technologie, die G.E.O.S. Ingenieurgesellschaft mbH und das polnische Unternehmen Hydrogeometal PK.

Mikroorganismen essen Kupfer

Um Kupfer und andere Wertmetalle aus Abraumhalden herauszulösen, wollen die am Helmholtz-Institut arbeitenden Biotechnologen Mikroorganismen einsetzen. Die Forschungspartner bei IMN und GEOS haben vor, dafür chemische Methoden zu testen. Sie werden außerdem untersuchen, wie sich aus den aufgelösten Kupfererzen die reinen Metalle abtrennen und dabei weitere Rückstände minimieren lassen. Die Wissenschaftler vom Karlsruhe Institut für Technologie wollen in dem Projekt erforschen, ob sich die mineralischen Haldenrückstände für die Herstellung zementhaltiger Materialien eignen.

Das Freiberger Helmholtz-Institut baut mit dem Projekt seine Forschung zum Recycling von Wertstoffen aus Bergbauhalden aus. Sie könnten in Zukunft neben den natürlichen Erzlagerstätten zu einer bedeutenden Rohstoffquelle zweiter Art werden, zumal es Halden überall auf der Welt gibt, wo Bergbau betrieben wurde oder wird.

Rohstoffproben aus Polen

Die Projektpartner wollen mit Probenmaterial aus einem derzeit entstehenden Flotationsbecken eines polnischen Bergwerks arbeiten. In solchen Becken werden alle Reststoffe abgelagert, die bei der Anreicherung (Flotation) von Kupfer und anderen Wertmetallen zu einem Metallkonzentrat anfallen. Die Rückstände türmen sich mit der Zeit zu Abraumhalden auf. Sie sind um ein Vielfaches größer als die Menge des gewonnenen Metalls. In Polen lagern noch etwa 2,4 Millionen Tonnen Kupfer in den Abraumhalden des Nichteisenerz-Bergbaus, der auch Kupfer einschließt; nur im Kohlebergbau gibt es mehr Halden.

Der Auftakt für das Forschungsprojekt NOMECOR fand vor kurzem im polnischen Poznan im Rahmen des Statusseminars zu STAIR statt, dem Programm zur deutsch-polnischen Nachhaltigkeitsforschung. Bei der Veranstaltung stellten sich alle bisher in dem Programm geförderten Projekte vor. NOMECOR ist Teil der zweiten Förderrunde und das einzige Forschungsprojekt im Bereich Ressourceneffizienz.

Weitere Informationen:

Dr. Stefan Dirlich | Projektkoordinator
Helmholtz-Institut Freiberg für Ressourcentechnologie des HZDR
Tel.: +49 351 260–4413| E-Mail: s.dirlich@hzdr.de

Dr. Katrin Pollmann | Leitende Wissenschaftlerin im Projekt
Helmholtz-Institut Freiberg für Ressourcentechnologie des HZDR
Tel.: +49 351 260–2946| E-Mail: k.pollmann@hzdr.de

Medienkontakt:

Anja Weigl | Pressereferentin
Tel.: +49 351 260–4427| E-Mail: a.weigl@hzdr.de
Helmholtz-Institut Freiberg für Ressourcentechnologie am HZDR
Chemnitzer Straße 40 | 09599 Freiberg | www.hzdr.de/hif

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Es ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Das HZDR hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Das Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) hat das Ziel, innovative Technologien für die Wirtschaft zu entwickeln, um mineralische und metallhaltige Rohstoffe effizienter bereitzustellen und zu nutzen sowie umweltfreundlich zu recyceln. Es wurde 2011 gegründet, gehört zum Helmholtz-Zentrum Dresden-Rossendorf und kooperiert eng mit der TU Bergakademie Freiberg.

Weitere Informationen:

https://www.hzdr.de/presse/nomecor

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie