Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wider den Widerstand - Batterien sollen kleiner und leistungsfähiger werden

18.01.2011
Mobiles Kommunizieren und Arbeiten mit Handy, Smartphone oder Notebook wäre ohne kleine Lithium-Ionen-Batterien nicht denkbar. Ihre Leistungsfähigkeit und Lebenszeit stoßen jedoch bei Anwendungen etwa in der Elektromobilität an ihre Grenzen. Mit einem in der Batterieforschung ungewöhnlichen Verfahren wollen Darmstädter Forscher den Weg zu kleineren und leistungsfähigeren Batterien ebnen.

Wie jede Batterie bestehen Lithium-Ionen-Batterien aus drei Komponenten: dem Pluspol (Kathode), dem Minuspol (Anode) und dem sogenannten Elektrolyten, der die beiden Pole voneinander trennt, durch den aber während des Betriebs Ionen wandern. Wie die verschiedenen Materialien an ihren Grenzflächen miteinander reagieren und welche Schichten sich hierbei bilden, ist bislang nicht ausreichend verstanden.

„Um Lithium-Ionen Batterien zu optimieren, müssen wir verstehen, welche chemischen Reaktionen an den Grenzflächen innerhalb der Batterie stattfinden“, erläutert Dr. René Hausbrand, Leiter der Arbeitsgruppe Lithium-Ionen-Batterien vom Fachgebiet Oberflächenforschung der TU Darmstadt.

Neue Erkenntnisse erhoffen sich die Darmstädter von einem Verfahren, das in der Batterieforschung bisher nur wenig angewandt wird: „Wir nutzen Reaktionskammern, die in ein Ultrahochvakuum-System integriert sind. Auf diese Weise können wir unter idealisierten Bedingungen die Reaktionen an Grenzflächen beobachten, also dort, wo unterschiedliche Materialien aufeinandertreffen“, so Hausbrand. Die Wissenschaftler tragen dabei Elektrolytmaterialien in hauchdünnen Scheibchen auf Kathodenmaterialien auf und beobachten die Reaktionen, die sie immer wieder unterbrechen können. Hierzu nehmen sie das Kathodenmaterial mit dem aufgetragenen Elektrolyten aus der Reaktionskammer heraus, transferieren es in das Ultrahochvakuum und analysieren die Grenzfläche. Die Forscher beobachten auf diese Weise, wie die Moleküle des Elektrolyten mit dem Material der Kathode reagieren, wie sich die chemische Struktur der Oberfläche der Kathode ändert und welche Moleküle sich dort absetzen und eine Schicht bilden.

„Wie genau diese manchmal nur wenige Moleküllagen dicken Ablagerungen auf der Kathode wirken, ist noch nicht vollständig geklärt. Sie werden aber eher als nachteilig für die Lebensdauer der Batterien angesehen, da sie den Innenwiderstand erhöhen“, erklärt Hausbrand. Die Leitfähigkeiten der einzelnen Komponenten für Lithium-Ionen und ihre Durchgängigkeit durch die verschiedenen Grenzflächen bestimmen wesentlich den Innenwiderstand der Batterie, der natürlich so gering wie möglich gehalten werden muss. Je kleiner der Innenwiderstand, desto größer die Leistungsfähigkeit. „Wenn wir genau wissen, was diese Schichten bewirken, können wir die Grenzfläche entsprechend optimieren“, blickt Hausbrand in die nahe Zukunft. So bringt der Physiker gemeinsam mit seinen Kollegen beispielsweise zum Schutz des Materials an der Kathode künstliche Schichten auf und misst die Kapazität über einen längeren Zeitraum.

Leistung braucht Oberfläche

Neben der Optimierung der Grenzflächen von Lithium-Ionen-Batterien haben die Darmstädter Wissenschaftler ihr Augenmerk auch auf Mikrobatterien gerichtet, deren Schichtdicke etwa einem Hundertstel eines Haares entspricht. Sie können in Mikrosystemen etwa in der Robotik zum Einsatz kommen. „Wegen ihrer kleinsten Abmessungen und der Art ihrer Herstellung können keine flüssigen Elektrolyte mehr verwendet werden wie bei den herkömmlichen Batterien, sondern nur noch feste Materialien“, berichtet Hausbrand. Welche Materialien als Festelektrolyte geeignet sind und wie sie am besten hergestellt werden, ist ein Thema, dem sich die Forscher auch gemeinsam mit Industriepartnern widmen. Die Leistungsfähigkeit der Mikrobatterien in Zukunft deutlich erhöhen könnte hierbei eine Strategie, die die Darmstädter zusammen mit ihren Partnern nun umsetzen wollen: Das Problem ist nämlich, dass leistungsfähige Batterien große Oberflächen benötigen – die es naturgemäß bei Mikrobatterien nicht gibt. „Wir wollen deshalb die Materialien auf Substrate aufbauen, die quasi wie eine Hügellandschaft aussehen“, so Hausbrand. Mit diesem Trick, sozusagen Hügel und Täler zu schaffen, kann die Oberfläche um ein Vielfaches erhöht werden, ohne die geometrische, das heißt die für das Auge sichtbare Oberfläche zu vergrößern. Allerdings benötigt man für dieses Vorgehen auch neue Verfahren, um die Materialien auf die Oberflächen aufzutragen. Hausbrand geht davon aus, dass entsprechende Prototypen in drei bis fünf Jahren erhältlich sein werden.

Das Fachgebiet Oberflächenforschung unter der Leitung von Prof. Dr. Wolfram Jaegermann ist Teil des Sonderforschungsbereichs „Elektrische Ermüdung von Funktionswerkstoffen“ und hat zusammen mit drei anderen Fachgebieten vom Bundesforschungsministerium im Rahmen des Konjunkturpakets II 2,5 Millionen Euro für seine Forschungen auf dem Gebiet von Lithium-Ionen- Batterien erhalten.

Pressekontakt
Dr. René Hausbrand
Fachgebiet Oberflächenforschung
Tel. 06151/16-70836
E-Mail: hausbrand@surface.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Form eine Funktion verleihen

23.06.2017 | Informationstechnologie

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungsnachrichten

Rudolf-Virchow-Preis 2017 – wegweisende Forschung zu einer seltenen Form des Hodgkin-Lymphoms

23.06.2017 | Förderungen Preise