Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wider den Widerstand - Batterien sollen kleiner und leistungsfähiger werden

18.01.2011
Mobiles Kommunizieren und Arbeiten mit Handy, Smartphone oder Notebook wäre ohne kleine Lithium-Ionen-Batterien nicht denkbar. Ihre Leistungsfähigkeit und Lebenszeit stoßen jedoch bei Anwendungen etwa in der Elektromobilität an ihre Grenzen. Mit einem in der Batterieforschung ungewöhnlichen Verfahren wollen Darmstädter Forscher den Weg zu kleineren und leistungsfähigeren Batterien ebnen.

Wie jede Batterie bestehen Lithium-Ionen-Batterien aus drei Komponenten: dem Pluspol (Kathode), dem Minuspol (Anode) und dem sogenannten Elektrolyten, der die beiden Pole voneinander trennt, durch den aber während des Betriebs Ionen wandern. Wie die verschiedenen Materialien an ihren Grenzflächen miteinander reagieren und welche Schichten sich hierbei bilden, ist bislang nicht ausreichend verstanden.

„Um Lithium-Ionen Batterien zu optimieren, müssen wir verstehen, welche chemischen Reaktionen an den Grenzflächen innerhalb der Batterie stattfinden“, erläutert Dr. René Hausbrand, Leiter der Arbeitsgruppe Lithium-Ionen-Batterien vom Fachgebiet Oberflächenforschung der TU Darmstadt.

Neue Erkenntnisse erhoffen sich die Darmstädter von einem Verfahren, das in der Batterieforschung bisher nur wenig angewandt wird: „Wir nutzen Reaktionskammern, die in ein Ultrahochvakuum-System integriert sind. Auf diese Weise können wir unter idealisierten Bedingungen die Reaktionen an Grenzflächen beobachten, also dort, wo unterschiedliche Materialien aufeinandertreffen“, so Hausbrand. Die Wissenschaftler tragen dabei Elektrolytmaterialien in hauchdünnen Scheibchen auf Kathodenmaterialien auf und beobachten die Reaktionen, die sie immer wieder unterbrechen können. Hierzu nehmen sie das Kathodenmaterial mit dem aufgetragenen Elektrolyten aus der Reaktionskammer heraus, transferieren es in das Ultrahochvakuum und analysieren die Grenzfläche. Die Forscher beobachten auf diese Weise, wie die Moleküle des Elektrolyten mit dem Material der Kathode reagieren, wie sich die chemische Struktur der Oberfläche der Kathode ändert und welche Moleküle sich dort absetzen und eine Schicht bilden.

„Wie genau diese manchmal nur wenige Moleküllagen dicken Ablagerungen auf der Kathode wirken, ist noch nicht vollständig geklärt. Sie werden aber eher als nachteilig für die Lebensdauer der Batterien angesehen, da sie den Innenwiderstand erhöhen“, erklärt Hausbrand. Die Leitfähigkeiten der einzelnen Komponenten für Lithium-Ionen und ihre Durchgängigkeit durch die verschiedenen Grenzflächen bestimmen wesentlich den Innenwiderstand der Batterie, der natürlich so gering wie möglich gehalten werden muss. Je kleiner der Innenwiderstand, desto größer die Leistungsfähigkeit. „Wenn wir genau wissen, was diese Schichten bewirken, können wir die Grenzfläche entsprechend optimieren“, blickt Hausbrand in die nahe Zukunft. So bringt der Physiker gemeinsam mit seinen Kollegen beispielsweise zum Schutz des Materials an der Kathode künstliche Schichten auf und misst die Kapazität über einen längeren Zeitraum.

Leistung braucht Oberfläche

Neben der Optimierung der Grenzflächen von Lithium-Ionen-Batterien haben die Darmstädter Wissenschaftler ihr Augenmerk auch auf Mikrobatterien gerichtet, deren Schichtdicke etwa einem Hundertstel eines Haares entspricht. Sie können in Mikrosystemen etwa in der Robotik zum Einsatz kommen. „Wegen ihrer kleinsten Abmessungen und der Art ihrer Herstellung können keine flüssigen Elektrolyte mehr verwendet werden wie bei den herkömmlichen Batterien, sondern nur noch feste Materialien“, berichtet Hausbrand. Welche Materialien als Festelektrolyte geeignet sind und wie sie am besten hergestellt werden, ist ein Thema, dem sich die Forscher auch gemeinsam mit Industriepartnern widmen. Die Leistungsfähigkeit der Mikrobatterien in Zukunft deutlich erhöhen könnte hierbei eine Strategie, die die Darmstädter zusammen mit ihren Partnern nun umsetzen wollen: Das Problem ist nämlich, dass leistungsfähige Batterien große Oberflächen benötigen – die es naturgemäß bei Mikrobatterien nicht gibt. „Wir wollen deshalb die Materialien auf Substrate aufbauen, die quasi wie eine Hügellandschaft aussehen“, so Hausbrand. Mit diesem Trick, sozusagen Hügel und Täler zu schaffen, kann die Oberfläche um ein Vielfaches erhöht werden, ohne die geometrische, das heißt die für das Auge sichtbare Oberfläche zu vergrößern. Allerdings benötigt man für dieses Vorgehen auch neue Verfahren, um die Materialien auf die Oberflächen aufzutragen. Hausbrand geht davon aus, dass entsprechende Prototypen in drei bis fünf Jahren erhältlich sein werden.

Das Fachgebiet Oberflächenforschung unter der Leitung von Prof. Dr. Wolfram Jaegermann ist Teil des Sonderforschungsbereichs „Elektrische Ermüdung von Funktionswerkstoffen“ und hat zusammen mit drei anderen Fachgebieten vom Bundesforschungsministerium im Rahmen des Konjunkturpakets II 2,5 Millionen Euro für seine Forschungen auf dem Gebiet von Lithium-Ionen- Batterien erhalten.

Pressekontakt
Dr. René Hausbrand
Fachgebiet Oberflächenforschung
Tel. 06151/16-70836
E-Mail: hausbrand@surface.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

nachricht Treiber für Digitalisierung von Industrieanlagen: ABB, HPE und Rittal stellen Secure Edge Data Center vor
20.04.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics