Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pulse für eine bessere Haltung

02.09.2015

Um Wirbelsäulenverkrümmung bei Kindern und Jugendlichen besser behandeln zu können, setzt das EU-Projekt »StimulAIS« auf die Elektrostimulation von Muskeln. Fraunhofer-Wissenschaftler entwickelten dafür gemeinsam mit Partnern aus Industrie und Forschung den Prototypen eines Implantats.

»Setz dich gerade hin!« Diese Aufforderung kennt fast jedes Kind. Doch nicht immer ist es mit einer Erinnerung getan. Zwei von hundert Kindern und Jugendlichen zwischen 10 und 18 Jahren leiden an einer Verkrümmung der Wirbelsäule. Adoleszentenskoliose heißt diese Wachstumsstörung, die eine bleibende Verformung des Rückens bewirkt. Die Deformationen sind deutlich sichtbar und werden von den Betroffenen oft als entstellend empfunden.


Das Implantat stimuliert mit elektrischen Reizen.

© Fraunhofer IPMS

Die genauen Ursachen der Wirbelsäulenverkrümmung sind bei neun von zehn Patienten unbekannt oder, wie Mediziner sagen: idiopathisch. Neuere Untersuchungen deuten darauf hin, dass die idiopathische Adoleszentenskoliose, kurz AIS, auf eine Erkrankung des zentralen Nervensystems zurückgeht.

»Nach dieser Theorie ist die Übertragung von den Nerven zu den zuständigen Muskeln gestört, und zwar nur auf einer Rückenseite. Während auf der gesunden Seite die Muskeln ziehen, fehlt auf der kranken Seite der Impuls zum Gegenzug. Also kommt es zu einer Verkrümmung und Verdrehung der Wirbelsäule«, erklärt Dr. Andreas Heinig vom Fraunhofer-Institut für Photonische Mikrosysteme IPMS in Dresden.

Aufbauend auf dieser Theorie hat Heinigs Team zusammen mit Forschungs- und Industriepartnern aus Spanien und Frankreich einen neuartigen Ansatz zur Behandlung der Wirbelsäulenverkrümmung entwickelt. Es nutzt die Funktionelle Elektrostimulation: Dabei ersetzen gezielte elektrische Impulse jene Nervenreize, die infolge der Krankheit zu schwach oder gar nicht ausgeprägt sind.

Sie sollen die tief liegenden Muskeln entlang der Wirbel anregen und so den Gegenzug aufbauen, der ein symmetrisches Wachstum ermöglicht. Innerhalb von nur zwei Jahren entwickelte das interdisziplinäre europäische Konsortium den Prototyp eines Implantats.

Das Implantat gibt in erster Linie Impulse ab, und zwar in einem Muster aus aktiven Phasen und Pausen, das der Arzt fortlaufend auf die individuellen Bedürfnisse der Patienten abstimmt. Das Kernstück wird in der Leistengegend eingepflanzt. Es enthält Leiterplatten, von denen acht millimeterdünne Stromkabel an ausgewählte Bereiche längs der Wirbelsäule führen.

Dort stimulieren Elektroden die erschlafften Muskeln der vom Gehirn vernachlässigten Körperseite und messen zugleich deren Aktivität. Einige weitere Elektroden führen in die gesunde Körperseite und erfassen auch dort – quasi als Referenzwert – die Muskelaktivität. Diese unterschiedlichen Daten werden durch einen internen Regelmechanismus miteinander abgeglichen, sodass die Muskelstimulation laufend an den Behandlungsfortschritt angepasst werden kann.

Um die Rotatoren-Muskeln anzuregen, benötigt man 50 Pulse pro Sekunde – und zwar über längere Zeit: Ein typisches Trainingsprogramm sieht sechs bis acht Stunden täglich vor, vorzugsweise nachts oder während anderer Ruhezeiten. Dabei sollten die Muskeln in mehreren Schüben maximal zehn Sekunden lang stimuliert werden, unterbrochen von mindestens zehnminütigen Pausen.

Stimulations- und Pausenzeiten an Muskulatur anpassbar

Die im Implantat verwendete Batterie im Standardprogramm ist etwa neun Tage leistungsfähig, danach muss sie aufgeladen werden. Das dauert ungefähr 90 Minuten und geschieht drahtlos von außen, mittels induktiver Kopplung. Ebenfalls drahtlos werden die Daten vom Implantat zu einem externen Lesegerät überspielt – und vice versa. So lässt sich die im Körper gemessene Muskelaktivität nachvollziehen.

Die Stimulations- und Pausenzeiten können für jeden AIS-Patienten laufend an den Zustand seiner Muskulatur angepasst werden. »Nach welchem System das geschehen soll, haben unsere Partner in Valencia ausgetüftelt. Sollte das Implantat eines Tages bei AIS-kranken Kindern zum Einsatz kommen, dann wird der behandelnde Arzt das Lesegerät bedienen«, sagt Andreas Heinig.

Dass die Technik prinzipiell funktioniert, konnten die Forscherinnen und Forscher in ersten Tests zeigen. Dort ließen sich die Daten in beide Richtungen übertragen. Auch die Aktivierung der Muskeln klappte. Um die feinen Elektroden exakt in der tiefliegenden Muskulatur nahe der Wirbelsäule zu positionieren, hat das am Konsortium beteiligte französische Unternehmen Synimed spezielle chirurgische Präzisionsinstrumente entwickelt.

Das Konzept der Funktionellen Elektrostimulation ist den gängigen Therapien überlegen, bei denen die Kinder ein Korsett tragen oder die Wirbelsäule operativ mit Metallplatten und Stiften versteift wird: Die minimal invasive Behandlung via Implantat verspricht nicht nur, das Schlimmste zu verhindern, sie eröffnet vielmehr die Möglichkeit, Missbildungen dauerhaft zu korrigieren. Ob sie sich in der Praxis bewährt, muss die Zukunft zeigen, betont Andreas Heinig: »Wir haben klar belegt, dass diese Form von Therapie technisch machbar ist. Jetzt muss in klinischen Studien der Beweis erbracht werden, dass sie medizinisch wirksam ist und eine Heilung oder zumindest Verbesserung der Skoliose bewirken kann.«

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/September/pulse-fuer...

Romy Zschiedrich | Fraunhofer Forschung kompakt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Stromindikatorklemmen mit Push-in-Anschluss
24.07.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Leiterplatten-Steckverbinder werkzeuglos montieren
24.07.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops