Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Offizieller Startschuß für Forschungsverbund Windenergie

01.02.2013
Ein einmaliges Bündnis für die deutsche Windenergie-Forschung wurde gestern in Berlin offiziell geschlossen – der Forschungsverbund Windenergie.

Vertreter der drei Partner Deutsches Zentrum für Luft- und Raumfahrt (DLR), ForWind - Zentrum für Windenergieforschung der Universitäten Oldenburg, Hannover und Bremen und das Fraunhofer-Institut für Windenergie und Energiesystemtechnik (IWES) unterzeichneten den Kooperationsvertrag. Das gebündelte Know-how von mehr als 600 Wissenschaftlerinnen und Wissenschaftlern wird wegweisende Impulse für eine Erneuerbare-Energien-Zukunft auf Basis von On- und Offshore-Windenergie geben.

Der Forschungsverbund ist durch seine personelle Stärke und die Vernetzung von Kompetenzen in der Lage, langfristige und strategisch wichtige Großprojekte erfolgreich zu bearbeiten. Zur Bearbeitung innovativer Fragestellungen steht eine Forschungsinfrastruktur mit Testzentren und Laboren zur Verfügung, die weltweit Maßstäbe setzen.

Bundesumweltminister Peter Altmaier begrüßt die Gründung des Forschungsverbundes: „Ein koordiniert auftretender Ver-bund für die Windenergieforschung stärkt die Unternehmen in Deutschland und trägt zur Sicherung ihrer Zukunft bei. Für das Gelingen der Energiewende brauchen wir effiziente und zuverlässige Windenergieanlagen, an denen der Forschungsverbund arbeitet“.

Das gemeinschaftliche Auftreten im Forschungsverbund besitzt internationale Ausstrahlungskraft und erschließt Synergien für anstehende Großprojekte in der Windindustrie. Für die zunehmende Professionalisierung der Branche und den Erhalt der Technologieführerschaft sind Antworten für technologisch anspruchsvolle Fragestellungen akut gefragt. Die inhaltliche Zu-sammenarbeit der Partner startet direkt in dem BMU-geförderten Projekt „Smart Blades – Entwicklung und Konstruktion intelligenter Rotorblätter“ mit einem Projektvolumen von 12 Mio. Euro und einer Laufzeit von 39 Monaten.

Gemeinsame Forschung an intelligenten Rotorblättern

Die Forscher erwarten von Smart Blade Technologien, dass die eintretende Lastminderung an den Rotorblättern ein aerodynamisch optimiertes und leichteres Design von Windenergieanlagen ermöglicht. Durch Designänderungen ließen sich Material- und Logistikkosten reduzieren und die Lebensdauer der Anlage erhöhen.

Rotorblatthinterkanten, die sich in Ihrer Form verändern können, und Klappen, die bei Bedarf den Wind umlenken - sehr große Rotorblätter, die mit solchen Mechanismen ausgestattet sind, können gezielt Böen ausregeln und Leistungsschwankungen verringern.

Dadurch kann die Schadensanfälligkeit reduziert und eine längere Lebensdauer erreicht werden. Solche aktiven Technologien werden in der Luftfahrt bereits erprobt und sollen nun auch in der Windenergie Anwendung finden.

Weht der Wind zu stark, werden derzeit Rotorblätter in voller Länge aus dem Wind gedreht. Inzwischen überstreichen die neuen, bis zu 85 Meter langen Blätter bei jeder Umdrehung eine Fläche, die mehreren Fußballfeldern entspricht. Die Böigkeit des Windes führt aber zu sehr unterschiedlichen Windverhältnissen innerhalb dieser großen Fläche, so dass ein pauschales – und auch relativ langsames – Verstellen des gesamten Rotorblattes dies nicht berücksichtigen kann. Daher soll nun durch bewegliche Vorflügel, Hinterkanten und andere Systeme die lokale Strömung genauer und schneller beeinflusst werden.

Große Herausforderungen in der Windenergiebranche

Anlagenbauer scheuen bislang die Entwicklung und den Einsatz von Smart Blades. Die große Herausforderung wird sein, dass die Rotorblätter durch die aktiven Mechanismen nicht fehleranfälliger, schwerer und wartungsintensiver werden dürfen und sich die Gestehungskosten nicht erhöhen. Ziel des Forschungsprojektes ist es daher, die Machbarkeit, die Effizienz und die Zuverlässigkeit von Smart Blades unter Beweis zu stellen.

Das Kick-Off für dieses erste große Verbund-Projekt ist der Startpunkt für die Entwurfsarbeiten für Rotorblätter mit einer „passiven“ und zwei alternativen „aktiven“ Technologien.

Ansprechpartner für weitere Informationen:

DLR
Dorothee Bürkle, Kommunikation DLR
T: +49 2203 601 3492
E: dorothee.buerkle@dlr.de
ForWind
Dr. Stephan Barth - Geschäftsführer
T: +49 441 798 5091
E: stephan.barth@forwind.de
Fraunhofer IWES
Prof. Dr.-Ing. Andreas Reuter - Geschäftsführender Institutsleiter Fraunhofer IWES Nordwest
T: +49 471 14290-200
E: andreas.reuter@iwes.fraunhofer.de

Uwe Krengel | Fraunhofer-Institut
Weitere Informationen:
http://www.dlr.de/
http://www.forwind.de/
http://www.iwes.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie