Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Batterietyp entwickelt

03.12.2012
Natrium-Sauerstoff-Zellen mit überraschenden Eigenschaften – Erfolgreiche Grundlagenforschung an Metall-Luft-Batterien

Die Erforschung von neuen und verbesserten elektrochemischen Speichern für elektrische Energie gehört heute zu den dringenden Aufgaben im Rahmen der Energiewende. Sowohl für mobile als auch für stationäre Anwendungen werden Batterien mit spezifischen Eigenschaftsprofilen benötigt.


REM-Aufnahme der während der Zellentladung entstehenden, würfelförmigen NaO2-Partikel. - Bild: Pascal Hartmann

Die Suche nach grundsätzlich neuen Zellkonzepten für besonders speicherfähige Batterien ist hier neben der konsequenten Weiterentwicklung bestehender Konzepte ein Schwerpunkt internationaler Forschungsanstrengungen.

Die Physikochemiker Pascal Hartmann, Conrad L. Bender, Dr. Philipp Adelhelm und Prof. Dr. Jürgen Janek berichten nun gemeinsam mit Kollegen aus dem BELLA-Labor am Institut für Nanotechnologie des KIT in Karlsruhe und der BASF SE in der renommierten Fachzeitschrift „Nature Materials“ erstmals über eine reversibel arbeitende elektrochemische Zelle auf der Basis von Natriummetall, Sauerstoff und dem Reaktionsprodukt Natriumsuperoxid. Natrium ist ebenso wie Lithium ein reaktives Alkalimetall, das eine Komponente von besonders leistungsfähigen elektrochemischen Energiespeichern sein kann.

Während jedoch heute lithiumbasierte Batterien in großem Umfang zum Einsatz kommen und auch intensiv für den Einsatz in größeren Energiespeichern untersucht werden, spielt Natrium bisher für elektrochemische Speicheranwendungen bei Raumtemperatur keine Rolle. Wesentlicher Grund dafür ist, dass die Elektrochemie des Natriums insgesamt wesentlich weniger gut untersucht ist. Bereits seit rund drei Jahren wird daher am Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen (JLU) auf diesem Arbeitsgebiet geforscht. Die nun von den Gießener Forschern erzielten Ergebnisse stellen für die Elektrochemie des Natriums einen unerwarteten Kenntnissprung dar, der die Forschung auf natriumbasierten Batterien weiter beleben wird.

Die Entwicklung der vorgestellten Natrium-Sauerstoff-Zelle ist aber auch aus einer anderen Perspektive ein wichtiger Schritt: Wieder aufladbare arbeitende Metall-Luft-Batterien mit hoher Speicherkapazität für den Betrieb bei Raumtemperatur stellen bis heute eine der größten elektrochemischen Herausforderungen dar. Als besonders attraktiv gelten Lithium-Luft-Batterien wegen ihrer besonders großen theoretischen Speicherkapazität. Bis heute gibt es allerdings eine Reihe von grundsätzlichen Problemen, die es zu überwinden gilt – unter anderem eine bisher unzureichende Wiederaufladbarkeit und zahlreiche Nebenreaktionen, die eine mangelhafte Stabilität verursachen. Vor diesem Hintergrund sind die Ergebnisse der Gießener Chemiker an Natriummetall-Sauerstoff-Zellen hochinteressant: Hier gelingen Entladung und Ladung erheblich effizienter, was auch der Entwicklung von Metall-Luft-Batterien insgesamt neue Impulse geben wird.

Die Ergebnisse der Gießener Forschergruppe wurden im Rahmen des internationalen Forschungsnetzwerks für Elektrochemie und Batterien der BASF SE in Ludwigshafen erzielt. Gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern der BASF SE in Ludwigshafen arbeiten in diesem Netzwerk Forschungsteams in Deutschland, Israel, Kanada, der Schweiz und den USA an Materialien und Zellkonzepten für neue Batteriegenerationen. Der Gießener Doktorand Pascal Hartmann, Erstautor der Publikation, wird darüber hinaus vom Fonds der chemischen Industrie gefördert.

Publikation
A rechargeable room-temperature sodium superoxide (NaO2) battery
Pascal Hartmann, Conrad L. Bender, Milos Vraèar, Anna Katharina Dürr, Arnd Garsuch, Jürgen Janek und Philipp Adelhelm
Nature Materials, DOI: 10.1038/nmat3486

Kontakt
Dr. Philipp Adelhelm, Prof. Dr. Jürgen Janek
Physikalisch-Chemisches Institut der Justus-Liebig-Universität Gießen
Heinrich-Buff-Ring 58, 35392 Gießen
Die 1607 gegründete Justus-Liebig-Universität Gießen (JLU) ist eine traditionsreiche Forschungsuniversität, die rund 26.000 Studierende anzieht. Neben einem breiten Lehrangebot – von den klassischen Naturwissenschaften über Rechts- und Wirtschaftswissenschaften, Gesellschafts- und Erziehungswissenschaften bis hin zu Sprach- und Kulturwissen¬schaften – bietet sie ein lebenswissenschaftliches Fächerspektrum, das nicht nur in Hessen einmalig ist: Human- und Veterinärmedizin, Agrar-, Umwelt- und Ernährungswissenschaften sowie Lebensmittelchemie. Unter den großen Persönlichkeiten, die an der JLU geforscht und gelehrt haben, befindet sich eine Reihe von Nobelpreisträgern, unter anderem Wilhelm Conrad Röntgen (Nobelpreis für Physik 1901) und Wangari Maathai (Friedensnobelpreis 2004). Seit 2006 wird die JLU sowohl in der ersten als auch in der zweiten Förderlinie der Exzellenzinitiative gefördert (Excellence Cluster Cardio-Pulmonary System – ECCPS; International Graduate Centre for the Study of Culture – GCSC).

Charlotte Brückner-Ihl | idw
Weitere Informationen:
http://www.nature.com/nmat/index.html
http://www.uni-giessen.de/cms/fbz/fb08/Inst/physchem/janek

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics