Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode erleichtert Forschung an Brennstoffzellen-Katalysatoren

09.10.2015

Die Reinigung von Autoabgasen ist eines der bekanntesten katalytischen Verfahren. Doch nahezu die gesamte chemische Industrie basiert auf katalytischen Reaktionen. Das Katalysatordesign spielt daher eine Schlüsselrolle bei der Verbesserung vieler Prozesse. Ein internationales Team von Wissenschaftlern hat nun ein Konzept vorgestellt, das die geometrischen und die Adsorptionseigenschaften elegant miteinander in Beziehung setzt. Die Leistungsfähigkeit ihrer Methode zeigten sie am Beispiel eines neu entwickelten Platin-Katalysators für Brennstoffzellen.

Wasserstoff wäre ein idealer Energieträger: Überschüssige Windenergie könnte Wasser in seine Elemente zerlegen, mit dem Wasserstoff ließen sich höchst effizient Brennstoffzellen-Elektroautos antreiben. Als Abgas entstünde dabei nur Wasser, die Reichweite wäre wie gewohnt. Doch noch sind Brennstoffzellen-Fahrzeuge Raritäten. Platin (Pt) ist extrem teuer.


Die unterschiedliche Zahl gleichartiger Nachbarn hat einen wichtigen Einfluss auf die katalytische Aktivität von Oberflächenatomen eines Nanopartikels

David Loffreda, CNRS, Lyon

Eine der Schlüsselkomponenten der Brennstoffzelle ist der Platin-Katalysator, an dessen Oberfläche der Sauerstoff reduziert wird. Sicher ist, dass hierbei nicht die gesamte Platinoberfläche katalytisch aktiv ist sondern nur einige besonders exponierte Stellen, sogenannte aktive Zentren.

Herauszufinden, was ein aktives Zentrum ausmacht, daran arbeitet ein Team von Wissenschaftlern der Technischen Universität München (TUM), der Ruhr-Universität Bochum, der École normale supérieure (ENS) Lyon, Centre National de la Recherche Scientifique (CNRS), der Universität Claude Bernard Lyon 1 (Frankreich) und der Universität Leiden (Niederlande).

Studieren am Modell

Eine gängige Methode zur Entwicklung von Katalysatoren und zur Modellierung der am Katalysator ablaufenden Prozesse ist die computergestützte Simulation der chemischen Vorgänge. Mit wachsender Anzahl zu berechnender Atome werden die quantenchemischen Berechnungen dabei aber schnell extrem aufwändig.

Einen neuen Weg präsentieren die Forscher nun mit einer Methode, die sie „Coordination-Activity-Plots“ getauft haben. Sie stellt die Adsorptionseigenschaften einer betrachteten Position in einen direkten Zusammenhang mit der Struktur. Basis dafür ist die „Generalisierte Koordinationszahl“ (generalized coordination number, GCN). Sie zählt die direkten Nachbarn eines Atoms und die Koordinationszahlen von dessen Nachbarn (GCN).

Nach der neuen Methode berechnet besitzt eine typische Pt(111)-Oberfläche einen GCN-Wert von 7,5. Der optimale Katalysator sollte dagegen einen Wert von 8,3 erzielen, Die dafür nötige größere Zahl an Nachbarn lässt sich erreichen, indem beispielsweise gezielt Defekte in die Platinoberfläche eingebaut werden.

Erfolgreicher Praxistest

Um die Genauigkeit ihrer Methode unter Beweis zu stellen, konzipierten die Forscher am Rechner einen Platinkatalysator, der eine erhöhte Anzahl solcher aktiver Zentren enthielt. Anschließend stellten sie den Modellkatalysator auf drei verschiedenen Synthesewegen her. In allen drei Fällen zeigte der Katalysator eine dreieinhalb Mal höhere katalytische Aktivität.

„Diese Arbeit eröffnet einen völlig neuen Weg für die Katalysatorentwicklung: die Gestaltung von Materialien auf Basis geometrischer Grundprinzipien, die aufschlussreicher sind als die energetische Betrachtung“, sagt Federico Calle-Vallejo. „Ein weiterer Vorteil der Methode ist, dass sie anschaulich auf einem der grundlegenden Prinzipien der Chemie aufbaut, dem der Koordinationszahl. Dies ist eine erhebliche Erleichterung für die computergestützte Katalysatorentwicklung.“

„Mit diesem Wissen könnte man Nanopartikel entwickeln, die wesentlich weniger Platin enthalten oder sogar andere katalytisch aktive Metalle mit einbeziehen“, sagt Professor Aliaksandr S. Bandarenka, Tenure Track-Professor an der TU München. „Und in Zukunft werden wir unsere Methode auch auf andere Katalysatoren und Prozesse anwenden.“

Die Forschungsarbeiten wurden unterstützt mit Mitteln der Europäischen Union im Rahmen der Fuel Cells and Hydrogen (FCH) Initiative, der Niederländischen Organisation für Wissenschaftliche Forschung (NWO), der Deutschen Forschungsgemeinschaft (SFB 749, Exzellenzcluster Nanosystems Initiative Munich (NIM) und Ruhr Explores Solvation (RESOLV)) sowie der Helmholtz Energie-Allianz.

Publikation

Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors, Federico Calle-Vallejo, Jakub Tymoczko, Viktor Colic, Quang Huy Vu, Marcus D. Pohl, Karina Morgenstern, David Loffreda, Philippe Sautet, Wolfgang Schuhmann, Aliaksandr S. Bandarenka. Science, 9. Okt. 2015; DOI : 10.1126/science.aab3501

Kontakt:

Prof. Dr. Aliaksandr S. Bandarenka
Technischen Universität München
Physik der Energiewandlung und -speicherung
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12531
E-mail: bandarenka@ph.tum.de

Weitere Informationen:

http://www.energy.ph.tum.de/index.php?id=5 Homepage Professur für Physik der Energiewandlung und -speicherung, TU München
http://www.ruhr-uni-bochum.de/elan/index.html Homepage Analytische Chemie, Elektroanalytik & Sensorik, RUB
http://www.ens-lyon.fr/CHIMIE Homepage Laboratoire de Chimie, Ens de Lyon
https://mediatum.ub.tum.de/?id=1278461 Bildmaterial

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie