Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Kohlenstoff mit winzigen Mustern

28.12.2016

Forschern am Karlsruher Institut für Technologie (KIT) ist es erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Gemeinsam mit Wissenschaftlern an der Universität Freiburg versahen sie Polymere per Lithographie mit winzig kleinen Strukturen und wandelten sie über Pyrolyse um. So erhielten sie pyrolytischen magnetischen Kohlenstoff (PMC). Dieser ist kostengünstig, lässt sich bei Raumtemperatur nutzen und eignet sich für Mikro und Nanoelektromechanische Systeme (MEMS und NEMS). Im Journal of Applied Physics stellen die Forscher PMC vor. (DOI: 10.1063/1.4972476)

Reiner Kohlenstoff ist normalerweise nicht magnetisch. Daher konzentrierte sich die Nanotechnologie beim Einsatz von Kohlenstoff bisher auf dessen Fähigkeit zum Elektronentransport. Kohlenstoff mit magnetischen Eigenschaften wurde zwar bereits vereinzelt hergestellt, jedoch ohne die Produktion auf die Mikro- und Nanoskala zu übertragen.


Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschaften verantwortlichen ungepaarten Elektronenspins (rot).

Abbildung: Swati Sharma

Forschern um Professor Jan G. Korvink am Institut für Mikrostrukturtechnik (IMT) des KIT ist es zusammen mit Wissenschaftlern um Professor Stefan Weber am Institut für Physikalische Chemie der Universität Freiburg nun erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen.

Der von ihnen gefertigte pyrolytische magnetische Kohlenstoff (PMC) ist kostengünstig, bleibt anders als die meisten magnetischen Materialien auch bei extrem hohen Temperaturen stabil, erfordert keine speziellen Lagerungsbedingungen, lässt sich bei Raumtemperatur nutzen und ist mit den meisten skalierbaren lithographischen Techniken kompatibel.

Wie die Forscher im Journal of Applied Physics berichten, verwendeten sie als Ausgangsstoff Polymere, wie sie gemeinhin bei der Fertigung von Mikroelektromechanischen Systemen (MEMS) eingesetzt werden. MEMS sind winzige Bauteile, die elektrische und mechanische Informationen verarbeiten, unter anderem in der Mess- und Sicherheitstechnik, Medizin- und Automobiltechnik.

Die verwendeten Polymere lassen sich durch verschiedene Verfahren mit Mikro- und Nanostrukturen versehen; die Karlsruher und Freiburger Wissenschaftler bedienten sich dazu der Photolithographie und der Zwei-Photonen-Lithographie. Bei Ersterer werden die in einer Maske gespeicherten Informationen durch fotografische Abbildung in eine strahlungsempfindliche Schicht übertragen. Bei Letzterer wird flüssiges Harz durch fokussierte Laserstrahlen ausgehärtet und werden so in hohem Tempo winzige dreidimensionale Strukturen geschaffen.

Die Wissenschaftler unterzogen die strukturierten Polymere einer Pyrolyse, wobei die Temperatur bei nur etwa 600 Grad Celsius lag, was für eine ganze Reihe von MEMS-Materialien verträglich ist. So wandelten sie die Polymere in Kohlenstoff um. „Dieser pyrolytische magnetische Kohlenstoff, kurz PMC, unterscheidet sich grundlegend von glasartigem Kohlenstoff, der klassischen Form des pyrolytischen Kohlenstoffs. PMC besitzt intrinsische magnetische Eigenschaften, weil er während der Pyrolyse seine Mikrostruktur verändert und ungepaarte Elektronenspins aufgebaut hat“, erklärt Dr. Swati Sharma vom IMT des KIT, korrespondierende Autorin der Publikation. „Je mehr ungepaarte Elektronenspins vorliegen, desto stärker sind die magnetischen Eigenschaften.“

Der nach dem dargestellten Verfahren hergestellte pyrolytische magnetische Kohlenstoff (PMC) ist dank seiner Stabilität und der günstigen Herstellungskosten für viele Anwendungen attraktiv, wie für die nächste Generation der Mikroelektromechanischen Systeme (MEMS) und die weiter miniaturisierten Nanoelektromechanischen Systeme (NEMS), für Magnetresonanzspektroskopie und weitere bildgebende Techniken sowie die Herstellung von magnetischen Kompositen. Darüber hinaus ist PMC interessant für die grundlegende Erforschung magnetischer Phänomene in Kohlenstoff.

Die Herstellung von PMC ist das Ergebnis fachübergreifender Zusammenarbeit: Neben Dr. Swati Sharma, die sich schwerpunktmäßig mit kohlenstoffbasierten MEMS befasst, waren der Physiker Dr. Lorenzo Bordonali und der Chemiker Dr. Neil McKinnon aus der Gruppe von Professor Jan G. Korvink, Experte für Magnetresonanztechnologie, am KIT sowie der Materialwissenschaftler Arpad M. Rostas aus der Gruppe von Professor Stefan Weber an der Universität Freiburg daran beteiligt. Finanziert wurde die Arbeit im Rahmen des EU-Projekts NMCEL unter der Leitung von Professor Jan G. Korvink.

Swati Sharma, Arpad M. Rostas, Lorenzo Bordonali, Neil MacKinnon, Stefan Weber, and Jan G. Korvink: Micro and nano patternable magnetic carbon. Journal of Applied Physics, 2016. DOI: 10.1063/1.4972476

Weiterer Kontakt:

Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schnell, günstig, tragbar: Testgerät PIDcheck prüft Solarmodule im Feld auf PID
18.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Faszination Weltall - Erlanger Forscher züchten Kristalle in der Schwerelosigkeit
15.06.2018 | Fraunhofer IISB

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics