Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Kohlenstoff mit winzigen Mustern

28.12.2016

Forschern am Karlsruher Institut für Technologie (KIT) ist es erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen. Gemeinsam mit Wissenschaftlern an der Universität Freiburg versahen sie Polymere per Lithographie mit winzig kleinen Strukturen und wandelten sie über Pyrolyse um. So erhielten sie pyrolytischen magnetischen Kohlenstoff (PMC). Dieser ist kostengünstig, lässt sich bei Raumtemperatur nutzen und eignet sich für Mikro und Nanoelektromechanische Systeme (MEMS und NEMS). Im Journal of Applied Physics stellen die Forscher PMC vor. (DOI: 10.1063/1.4972476)

Reiner Kohlenstoff ist normalerweise nicht magnetisch. Daher konzentrierte sich die Nanotechnologie beim Einsatz von Kohlenstoff bisher auf dessen Fähigkeit zum Elektronentransport. Kohlenstoff mit magnetischen Eigenschaften wurde zwar bereits vereinzelt hergestellt, jedoch ohne die Produktion auf die Mikro- und Nanoskala zu übertragen.


Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschaften verantwortlichen ungepaarten Elektronenspins (rot).

Abbildung: Swati Sharma

Forschern um Professor Jan G. Korvink am Institut für Mikrostrukturtechnik (IMT) des KIT ist es zusammen mit Wissenschaftlern um Professor Stefan Weber am Institut für Physikalische Chemie der Universität Freiburg nun erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen.

Der von ihnen gefertigte pyrolytische magnetische Kohlenstoff (PMC) ist kostengünstig, bleibt anders als die meisten magnetischen Materialien auch bei extrem hohen Temperaturen stabil, erfordert keine speziellen Lagerungsbedingungen, lässt sich bei Raumtemperatur nutzen und ist mit den meisten skalierbaren lithographischen Techniken kompatibel.

Wie die Forscher im Journal of Applied Physics berichten, verwendeten sie als Ausgangsstoff Polymere, wie sie gemeinhin bei der Fertigung von Mikroelektromechanischen Systemen (MEMS) eingesetzt werden. MEMS sind winzige Bauteile, die elektrische und mechanische Informationen verarbeiten, unter anderem in der Mess- und Sicherheitstechnik, Medizin- und Automobiltechnik.

Die verwendeten Polymere lassen sich durch verschiedene Verfahren mit Mikro- und Nanostrukturen versehen; die Karlsruher und Freiburger Wissenschaftler bedienten sich dazu der Photolithographie und der Zwei-Photonen-Lithographie. Bei Ersterer werden die in einer Maske gespeicherten Informationen durch fotografische Abbildung in eine strahlungsempfindliche Schicht übertragen. Bei Letzterer wird flüssiges Harz durch fokussierte Laserstrahlen ausgehärtet und werden so in hohem Tempo winzige dreidimensionale Strukturen geschaffen.

Die Wissenschaftler unterzogen die strukturierten Polymere einer Pyrolyse, wobei die Temperatur bei nur etwa 600 Grad Celsius lag, was für eine ganze Reihe von MEMS-Materialien verträglich ist. So wandelten sie die Polymere in Kohlenstoff um. „Dieser pyrolytische magnetische Kohlenstoff, kurz PMC, unterscheidet sich grundlegend von glasartigem Kohlenstoff, der klassischen Form des pyrolytischen Kohlenstoffs. PMC besitzt intrinsische magnetische Eigenschaften, weil er während der Pyrolyse seine Mikrostruktur verändert und ungepaarte Elektronenspins aufgebaut hat“, erklärt Dr. Swati Sharma vom IMT des KIT, korrespondierende Autorin der Publikation. „Je mehr ungepaarte Elektronenspins vorliegen, desto stärker sind die magnetischen Eigenschaften.“

Der nach dem dargestellten Verfahren hergestellte pyrolytische magnetische Kohlenstoff (PMC) ist dank seiner Stabilität und der günstigen Herstellungskosten für viele Anwendungen attraktiv, wie für die nächste Generation der Mikroelektromechanischen Systeme (MEMS) und die weiter miniaturisierten Nanoelektromechanischen Systeme (NEMS), für Magnetresonanzspektroskopie und weitere bildgebende Techniken sowie die Herstellung von magnetischen Kompositen. Darüber hinaus ist PMC interessant für die grundlegende Erforschung magnetischer Phänomene in Kohlenstoff.

Die Herstellung von PMC ist das Ergebnis fachübergreifender Zusammenarbeit: Neben Dr. Swati Sharma, die sich schwerpunktmäßig mit kohlenstoffbasierten MEMS befasst, waren der Physiker Dr. Lorenzo Bordonali und der Chemiker Dr. Neil McKinnon aus der Gruppe von Professor Jan G. Korvink, Experte für Magnetresonanztechnologie, am KIT sowie der Materialwissenschaftler Arpad M. Rostas aus der Gruppe von Professor Stefan Weber an der Universität Freiburg daran beteiligt. Finanziert wurde die Arbeit im Rahmen des EU-Projekts NMCEL unter der Leitung von Professor Jan G. Korvink.

Swati Sharma, Arpad M. Rostas, Lorenzo Bordonali, Neil MacKinnon, Stefan Weber, and Jan G. Korvink: Micro and nano patternable magnetic carbon. Journal of Applied Physics, 2016. DOI: 10.1063/1.4972476

Weiterer Kontakt:

Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Innovatives Messmodul zur Bestimmung der Inaktivierungsleistung von UV-Hygienisierungsanlagen
22.01.2018 | Institut für Bioprozess- und Analysenmesstechnik e.V.

nachricht TU Wien entwickelt neue Halbleiter-Bearbeitungstechnik
22.01.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics