Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht an für den Wasserstoff

09.10.2013
Mehrere japanische Autobauer haben für 2015 umweltfreundliche Wasserstoff-Fahrzeuge angekündigt.

Doch für solche mit Brennstoffzellen ausgerüsteten Elektroautos wird Wasserstoff benötigt. Berliner Forscher entwickeln derzeit eine besondere Art von Solarzelle, die Wasserstoff direkt aus Wasser gewinnen kann. Wasserstoff gilt zudem als der beste Speicher für die Energiewende, denn Wind und Sonne sind nicht gleichmäßig verfügbar.


Diese Nanofasern aus Indium-Gallium-Nitrid zeigen einen relativ hohen Photostrom. An der Grenzfläche der Nanodrähte spaltet sich aus Wasser der Wasserstoff ab. Bild: Paul-Drude-Institut für Festkörperelektronik (PDI)


In der Molekularstrahl-Epitaxie-Anlage des Paul-Drude-Instituts wachsen im Ultrahochvakuum Nanofasern auf Silizium. Bild: FVB

„Noch ist solch ein Photoelektrolyseur eine Vision, zu der wir mit unseren grundlegenden Arbeiten beitragen möchten“, sagt Lutz Geelhaar vom Paul-Drude-Institut für Festkörperelektronik (PDI). Sonnenfarmen zur direkten Erzeugung von Wasserstoff hätten den Vorteil, dass er im Prinzip wie Erdgas gehandhabt werden kann. Wasserstoff lässt sich in Tanks speichern oder über Pipelines verteilen. Das Gas könnte zum entscheidenden Speicher für die künftige Energiewirtschaft werden. Bislang wird es meist aus fossilen Quellen wie Erdgas gewonnen. Der Halbleiterphysiker warnt allerdings vor übereilten Erwartungen: „Das ist Grundlagenforschung, das kann man in drei Jahren noch nicht kaufen.“

Aber ein wenig träumen darf auch ein Wissenschaftler. Gemeinsam mit seinem japanischen Kollegen Jumpei Kamimura und anderen Wissenschaftlern verfolgt Geelhaar das Ziel, die Grundlagen für ein künstliches Blatt zu schaffen. So wie am Baum mit der Energie aus dem Sonnenlicht in Blättern Biomasse erzeugt wird, so soll das künstliche Blatt Wasser direkt in Wasserstoff und Sauerstoff aufspalten. Die Solarzelle befindet sich dazu in einem Wasserbad, in das Sonnenlicht scheinen kann. Idealerweise sollten die Gase nicht gemischt entstehen – das wäre hochexplosives Knallgas – sondern getrennt.

„Wirklich interessiert sind wir am Wasserstoff“, sagt PDI-Forscher Geelhaar. „Das ist das, was mit dem Oberbegriff solarer Brennstoff bezeichnet wird.“

Die Bindung zwischen Wasserstoff und Sauerstoff gehört zu den energiereichsten überhaupt. Umgekehrt können aus der Reaktion von Wasserstoff und Sauerstoff wieder große Energiemengen zurückgewonnen werden. Das Ganze ist zudem sehr umweltfreundlich, denn es entsteht ja nur Wasser.

Die direkte Abspaltung von Wasserstoff unter Lichteinfall war 1970 von japanischen Forschern erstmals beobachtet worden. Der nach ihnen benannte Honda-Fujishima-Effekt beschäftigt seitdem die Wissenschaftler. Denn die Entdeckung gelang mit Titandioxid, ein Material, das beispielsweise vielen Zahnpasten die weiße Farbe verleiht. Und genau da liegt die Crux, Titandioxid absorbiert kaum Licht, die Wasserstoffausbeute ist extrem gering.

„Wir haben deshalb nach dunklen Halbleitermaterialien gesucht, die durch Umwandlung von Sonnenlicht genau die Energiemenge im Kontakt mit Wasser übertragen können, durch die Wassermoleküle aufgespalten werden“, berichtet Kamimura. Und diese Zelle sollte natürlich über Jahre stabil funktionieren: „Es gibt Materialien, die die Wasserspaltung phantastisch gut hinbekommen, aber schon nach einer Minute kaputt gehen.“

Ihre Erfahrungen bei der Entwicklung von Leuchtdioden zahlten sich für Geelhaar und Kamimura aus. Die gemeinsamen Messungen mit Kollegen vom Helmholtz-Zentrum Berlin (HZB) zeigten, dass das von ihnen entwickelte Material basierend auf Indium-Gallium-Nitrid als Elektrode für die Wasserstofferzeugung aus Sonnenlicht besonders vielversprechend ist; es arbeitet effizient und stabil.

Indium-Gallium-Nitrid ist ein Halbleiter, der auch in Laserdioden eingesetzt wird, die den Spektralbereich von grün bis zum nahen ultraviolett abdecken. Sie werden beispielsweise in der Beleuchtungstechnik oder zum Abspielen von Blue-ray-Discs eingesetzt. Durch unterschiedlich große Anteile von Galliumnitrid und Indiumnitrid kann Licht mit verschiedenen Wellenlängen abgegeben (Wandlung von elektrischer Energie in Licht) oder – in der Solarzelle (Lichtenergie in elektrische Energie) – aufgenommen werden. So kann etwa in Solarzellen ein größerer Spektralbereich des Sonnenlichts eingefangen werden.

Doch ganz so einfach macht es die Natur den Wissenschaftlern nicht. Da gab es zunächst einen ziemlichen Haken. „Wir benötigen für die Züchtung der Kristallschicht eine Unterlage, die im Kristallgitter ähnlich ist“, erläutert Geelhaar. „Für das Indium-Gallium-Nitrid gibt es leider keine Unterlage, die diese Bedingung erfüllt.“

Kamimura ignorierte das unpassende Kristallgitter und machte trickreiche Versuche in der Molekularstrahlepitaxie-Anlage des Paul-Drude-Instituts. Dabei werden in einem Ultrahochvakuum Strahlen aus Indium- und Gallium-Atomen sowie Stickstoff-Radikalen auf eine Unterlage – in diesem Fall Silizium – gerichtet. Durch Steuerung der Temperaturen in den Verdampfertiegeln können verschiedene Strukturen und Zusammensetzungen erzeugt werden.

Schließlich ließ sich das Kristallgitter doch noch überlisten. Wenn schon keine Schicht möglich ist, dann doch feinste Nanodrähte, die Kamimura auf Siliziumunterlagen wachsen lässt. Das ermöglicht es, viel Licht einzufangen. Geelhaar deutet auf die neuesten Messkurven. Nanofasern aus Indium-Gallium-Nitrid, die mit einigen Fremdatomen Magnesium versehen sind (p-dotiert), zeigen einen relativ hohen Photostrom und gleichzeitig entwickelt sich Wasserstoff an der Grenzfläche der Nanodrähte mit Wasser. Co-Katalysatoren wie Platin verbessern zudem die Reaktion. „Das sind sehr ermutigende Ergebnisse“, meint der Halbleiterphysiker. „Unsere Nanofasern absorbieren bereits über ein breites Spektrum Licht und wandeln es in Strom um. Die Proben lösen sich zudem nicht auf, sondern liefern über längere Messzeiten konstante Ergebnisse bei der Wasserstoffproduktion.“

Dennoch liegt noch ein weiter Weg vor Geelhaar und Kamimura. Zur Erzeugung des Sauerstoffs an einer Gegenelektrode musste bislang mit einer von außen angelegten elektrischen Hilfsspannung gearbeitet werden. Das nächste Ziel ist nun, die Wasserstofferzeugung autark nur aus der Energie des Sonnenlichts zu erreichen.

Kontakt:
Paul-Drude-Institut für Festkörperelektronik (PDI) Berlin
Dr. Lutz Geelhaar
Tel.: 030 / 20 377-359
E-Mail: geelhaar@pdi-berlin.de
Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In den Instituten arbeiten mehr als 1.500 Mitarbeiter, Diplomanden, Doktoranden und Gastwissenschaftler. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie