Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiewende: Batterie und Kondensator vereinen

27.10.2015

Zur Energiewende gehört auch die intelligente Energienutzung. Doch noch gibt es beispielsweise keinen passenden Speicher für die Industrie, um die Bremsenergie der vielen Maschinen in Deutschland effizient zurückzugewinnen. Notwendig wäre ein Hybridspeicher, der die ergänzenden Eigenschaften von Batterien und Kondensatoren vereint. Die weitere Entwicklung dieser Powercaps genannten Hybride treiben das KIT und seine Partner im vom Land Baden-Württemberg mit 25 Millionen Euro geförderten Projekt FastStorage BW II nun voran.

„Ressourcen effizient nutzen erfordert auch die Rückgewinnung von Energie“, so Thorsten Grün vom KIT, der die Arbeiten im Projekt FastStorage BW II am KIT koordiniert. „Dafür wollen wir die passenden Speicher bereitstellen.“


Modulherstellung der Powercaps: Ein Roboter verschweißt einzelne Zellen zu Modulen, die anschließend zu einem Energiespeicher verschaltet werden.

Bild: KIT

Bisher wird elektrische Energie hauptsächlich in Batterien oder Kondensatoren gespeichert. Aber für viele Anwendungen in der Industrie sind beide nicht optimal: Eine Batterie kann viel Energie aufnehmen und lange speichern, aber benötigt lange Ladezeiten, hat eine begrenzte Lebensdauer und die Zahl der Ladezyklen ist beschränkt. Ein Kondensator nimmt Energie schnell auf und ist langlebig, hat aber nicht die Speicherkapazität und -dauer einer Batterie.

Das Projekt FastStorage BW II entwickelt nun eine passende Lösung: ein Hybridsystem, welches die Stärken beider Energiespeicher vereint. Aufgebaut sind die Hybridspeicher, auch „Powercaps“ oder Hybridkondensatoren genannt, aus zwei großflächigen Elektroden. Anders als bei herkömmlichen Kondensatoren sind die Elektroden jedoch nicht identisch aufgebaut und statt einem Dielektrikum erstreckt sich zwischen ihnen ein Elektrolyt, der positive Ionen zur Verfügung stellt.

Ähnlich wie bei einer Batterie besteht eine Elektrode aus Metalloxiden, an der ein Redoxprozess bewirkt wird. Die zweite Elektrode ist wie bei einem Kondensator aus Kohlenstoffmaterial aufgebaut. Anders als in einer Batterie wird Energie jedoch nicht in einer chemischen Reaktion, sondern im elektrischen Feld zwischen positiven Ionen und Elektronen gespeichert.

Die redoxaktiven Materialien im Kondensator vergrößern die effektive Betriebsspannung und die elektrische Felddichte, woraus direkt ein überproportionaler Anstieg der Speicherkapazität des Kondensators folgt. Powercaps können etwa doppelt so viel Energie wie klassische Kondensatoren speichern und gleichzeitig theoretisch bis zu 10-mal mehr elektrische Leistung bereitstellen wie eine Batterie.

Das KIT entwickelt, baut und testet nun die Speicher-Prototypen, die aus Powercap-Zellen bestehen: Es wird untersucht, wie man die Speichermodule per Roboter teil-automatisch verschweißen kann und dabei Schweißparameter und Prozessgeschwindigkeit optimiert. Ein passendes Gehäusedesign wird entwickelt, welches eine homogene Zellbelastung und ausreichende Kühlung gewährleistet.

Von zentraler Bedeutung wird die Entwicklung einer angemessenen elektronischen Betriebssteuerung sein, welche den sicheren und ökonomischen Betrieb des Moduls überwacht. Hier bauen die KIT-Forscher auf ihre langjährigen Erfahrungen mit Batterie-Management-Systemen auf.

Die ersten Prototypen wollen die Forscher in der Intralogistik testen, etwa bei elektrisch betriebenen Regalbediengeräten, Gabelstaplern oder autonomen Transportsystemen in Hochregallagern oder Produktionshallen.

„Bei jeder Hebe- oder Bremsbewegung kann Energie zurückgewonnen und im Powercap gespeichert werden“, so Grün. Hier könnten die Powercaps Lösungen zur Energie-Rückgewinnung effizienter oder überhaupt erst möglich machen. Gleichzeitig würden sie durch stark verkürzte Ladezeiten die Verfügbarkeit netzunabhängiger elektrischer Transporthelfer erhöhen.

Das Einsatzgebiet der Powercaps erstreckt sich über alle Tätigkeitsfelder, in denen ungleichmäßiger Strombedarf gedeckt werden muss. Beispielsweise können sie für unterbrechungsfreie Stromversorgungen oder auch zur Frequenzregulierung im Stromnetz eingesetzt werden. Zusätzlich könnten sie von großem Interesse für produzierende Unternehmen mit hohem Strombedarf sein, da sich so teure Lastspitzen durch die Pufferung des Strombezuges reduzieren lassen.

„Neben dem Nachweis der technologischen Machbarkeit steht in dem Projekt auch die Wirtschaftlichkeit dieser Hybridlösungen im Fokus“, erklärt Olaf Wollersheim, der das Projekt Competence E am KIT leitet. „So wird auf den Einsatz kostengünstiger und umweltschonender Materialien und Verarbeitungsprozesse geachtet.“

Mit den hier entwickelten Powercaps soll ein signifikanter Beitrag zum Wissen über Energiespeicherzellen geleistet werden, welcher durch den steigenden Energiebedarf und durch die Versorgungsschwankungen im Sektor der erneuerbaren Energien absolute Notwendigkeit besitzt. So können ganz neue Wege in der Speicherung von elektrischer Energie beschritten werden.

Als Nachfolgeprojekt von FastStorage BW I, in dem eine Marktanalyse zum Potenzial und den Einsatzmöglichkeiten von Powercaps durchgeführt wurde, soll in FastStorage BW II nun der Grundstein für eine serielle Fertigungsanlage für Powercaps in Baden-Württemberg gelegt werden. Das Projekt wird vom Ministerium für Finanzen und Wirtschaft Baden-Württemberg mit insgesamt 25 Millionen Euro gefördert und vom Fraunhofer-Institut für Produktionstechnik und Automatisierung (FhG IPA) in Stuttgart koordiniert. Neben dem KIT sind VARTA, SEW, Viastore, FhG ICT, ISW, EEP, ZSW, Freudenberg, IFSW, FESTOOL, Daimler und Porsche als Projektpartner beteiligt.

Das Projekt Competence E am KIT vereint die wirtschaftlich relevanten Forschungsaspekte vom Batteriematerial bis zum elektrischen Speichersystem auf eine deutschlandweit einzigartige Weise. Mit einer offenen Technologieplattform für elektrische Energiespeicher zielt der systemische Ansatz auf industriell anwendbare Lösungen und deren Produktionsverfahren. Damit wird ein wichtiger Schritt in Richtung Energiewende und Klimaschutzziele umgesetzt: eine erhöhte Speicherfähigkeit für stationäre Speicher zum Ausgleich der Fluktuation von erneuerbaren Energien sowie eine Verlängerung der Reichweite von Elektrofahrzeugen zur Erhöhung der Akzeptanz.

Mehr zum Projekt Competence E unter:
http://www.competence-e.kit.edu/

Weiterer Kontakt: Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Das Foto steht in druckfähiger Qualität auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

Weitere Informationen:

http://www.competence-e.kit.edu/

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Mit unkonfektionierten Kabeln durch die Schaltschrankwand
26.06.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive