Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energieforschung - Wasserstoff aus Sonne, Wasser und Nanokristallen

07.08.2014

NIM-Wissenschaftler haben ein zentrales Problem bei der Umwandlung von Licht in Wasserstoff mit Hilfe von Nanokristallen und „molekularen Shuttles“ gelöst.

Die Sonne liefert pro Jahr mehr als das 10.000-fache des aktuellen Energiebedarfs der Menschheit. Bisher ist es jedoch nicht möglich, große solare Energiemengen effizient zu speichern. Ein vielversprechender Ansatz ist die Photokatalyse, in deren Verlauf Wasser durch Licht zu Wasserstoff umgewandelt wird. Das Gas ist ein hervorragender Energiespeicher und sein Verbrennungsprodukt ist wiederum Wasser und somit komplett frei von Treibhausgasen.

Bei ihren Experimenten mit halbleitenden Nanokristallen ist es Physikern um Professor Jochen Feldmann (LMU München) mit Chemikern um Professor Andrey Rogach (CityUniversity Hong Kong) gelungen, die Ausbeute an Wasserstoff erheblich zu erhöhen. Hierbei setzten sie winzige Moleküle als „molekulare Shuttles“ ein, um den Ladungsstrom effizienter zu machen. Ihre Ergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift Nature Materials präsentiert.

Ein Lichtteilchen, zwei Ladungen, zwei Aufgaben

Das Prinzip der Photokatalyse erscheint auf den ersten Blick einfach. Ein Lichtteilchen (Photon) regt eine negative Ladung (Elektron) und eine positive Ladung (Loch) zum Beispiel in einem halbleitenden Nanokristall an. Elektron und Loch müssen sich räumlich trennen, damit das Elektron aus Wasser Wasserstoff und das Loch aus Wasser Sauerstoff erzeugen oder von anderen Molekülen aufgenommen werden kann.

Sobald der halbleitende Nanokristall mit kleinsten Metallpartikeln (häufig das kostspielige Platin) dekoriert wird, erledigt das auf das Metallpartikel überspringende Elektron die Wasserstoffproduktion problemlos. Auf Dauer gelingt den Elektronen dieses aber nur, wenn auch die positiv geladenen Löcher effizient vom Nanokristall abgeführt werden und so eine Rekombination verhindert wird.

Hier gab es bisher große Schwierigkeiten. Damit sich die Nanokristalle in Wasser lösen, werden sie mit polaren Molekülen (Liganden) umgeben. Dieser isolierende „Ligandenwald“ hindert das Loch allerdings daran, zu dem entsprechenden Fängermolekül wie Wasser oder einem größeren anderen Molekül zu gelangen.

Hier ist vielleicht der Vergleich zum Fliegen hilfreich: Flugzeuge sind aus räumlichen Gründen nicht in der Lage, Passagiere einzeln in den Hotels einer Stadt abzuholen. Hierfür werden kleinere Shuttlebusse eingesetzt, die diesen Kurzstrecken-Transport effizient ausführen können.

Analog setzten die Wissenschaftler aus München und Hong Kong kleinste Moleküle ein, die den Ligandenwald durchdringen, das Loch von der Oberfläche der Kristalle abholen und zu größeren Molekülen transportieren können.

Passende kleine „Shuttles“ konnten die Forscher in einfacher Weise durch Erhöhung des pH-Werts der wässrigen Lösung in Form von Hydroxyl-Ionen bereitstellen. Dieses führte zu einer drastisch erhöhten Wasserstoffproduktion. „Ich war verblüfft, als ich bei erstmaliger Erhöhung des pH-Wertes mit bloßem Auge Wasserstoffbläschen aufsteigen sah“, erzählt Thomas Simon, Doktorand am Lehrstuhl von Prof. Feldmann, von seinen Experimenten.

Stabiles und kostengünstiges System

Es zeigten sich weitere Vorteile dieses neuen Systems: Zum einen konnte die Langzeitstabilität entscheidend erhöht werden. Zum anderen wurde hier statt des kostspieligen Platins erstmals das weitaus preiswertere Nickel als Katalysator eingesetzt. „Die Entdeckung des neuen Mechanismus könnte zu ganz neuen Ansätzen in der photokatalytischen Wasserstoffproduktion führen“, meint der Leiter der Gruppe „Photokatalyse“, Dr. Jacek Stolarczyk.

Professor Jochen Feldmann, der auch Leiter des Exzellenzclusters NIM ist, betont die engagierte Zusammenarbeit der einzelnen Forschungsgruppen: „Unsere Arbeit konnte nur in einem interdisziplinären Team gelingen und wurde durch das Exzellenzcluster NIM und den bayerischen Forschungsverbund „Solar Technologies go Hybrid“ (SolTech) großzügig unterstützt.“

Publikation:
Thomas Simon, Nicolas Bouchonville, Maximilian J. Berr, Aleksandar Vaneski, Asmir Adrović, David Volbers, Regina Wyrwich, Markus Döblinger, Andrei S. Susha, Andrey L. Rogach, Frank Jäckel, Jacek K. Stolarczyk and Jochen Feldmann:
„Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods“
In: Nature Materials (2014). Published online: 3 August 2014
doi:10.1038/nmat4049
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4049.html

Kontakt:
Prof. Dr. Jochen Feldmann
Lehrstuhl für Photonik und Optoelektronik
Department für Physik und CeNS
Ludwig-Maximilians-Universtität München
Tel: +49-89-2180-3356
E-Mail: feldmann@lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten