Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beamer im Zuckerwürfelformat

05.09.2006
Jederzeit griffbereit: Der neue Beamer ist nicht größer als ein Zuckerwürfel. Statt den bisher gängigen Mikroarrays enthält er nur einen einzigen Spiegel, der um zwei Achsen schwenkbar ist. Damit wird er kleiner, leichter und handlicher als traditionelle Lichtquellen.

Kameras, MP3-Player und Speicherchips werden immer kleiner. Auch Beamer, tagtäglich eingesetzt im Vortragssaal und für Projektionen, sollen in Zukunft schrumpfen. Bisher stieß die Miniaturisierung jedoch an physikalische Grenzen: Kernstück des klassischen Beamers ist ein Mikrospiegelarray, das eine Million Spiegel enthält. Diese sind in einer Ebene schwenkbar und werden gleichmäßig beleuchtet. Durch Hin- oder Wegklappen erzeugen sie helle oder dunkle Punkte, die zusammen das projizierte Bild ergeben. Die Arrays verhindern nicht nur eine Miniaturisierung, sondern erschweren Beamern durch ihren hohen Preis auch den Weg in den Consumerbereich.

Forscher am Fraunhofer-Institut für Photonische Mikrosysteme IPMS in Dresden und am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena haben nun eine Alternative zu den Mikrospiegelarrays ausgeklügelt. Das Ergebnis ist ein Beamer in Zuckerwürfelgröße: "Wir verwenden einen einzigen Spiegel", verrät Andreas Bräuer, Leiter der Abteilung für Mikrooptische Systeme am IOF, "der um zwei Achsen schwenkbar ist."

Die nächste Hürde bei der Miniaturisierung ist die Lichtquelle. Die übliche Hochdrucklampe muss kleinen Diodenlasern weichen, wenn die Beamer auf Würfelzuckergröße schrumpfen sollen. Rote und blaue Diodenlaser sind bereits klein genug. Der grüne Laser ist jedoch noch zu sperrig. Mit der heutigen Technik lassen sich RGB-Beamer mit einer Seitenlänge von 10 x 7 x 3 Zentimetern herstellen. Das ist zwar noch deutlich größer als ein Zuckerwürfel, aber nur ein Viertel so groß wie handelsübliche Beamer. Weltweit arbeiten Forscher an der Verkleinerung der grünen Lichtquelle. Zusammen mit dem blauen und dem roten Diodenlaser soll sie dann die neue Rot-Grün-Blau-Quelle ergeben. "Wenn es gelingt, einen grünen Diodenlaser von der Größe des roten zu fertigen, dann kann auch der RGB-Beamer im Zuckerwürfelformat Realität werden", so Bräuer.

... mehr zu:
»Beamer »Diodenlaser »IOF »Miniaturisierung

Anwendungen gäbe es viele: Die Automobilindustrie benötigt kleine und kostengünstige Laserarrays als Abstandssensoren, die beim Einparken die Entfernung zum nächsten Objekt messen. Solche Sensoren werden auch in der Robotik und Montagetechnik gebraucht. Ein weiteres Einsatzgebiet für die Minilaser sind Digitalprojektoren, die sich in mobile Geräte wie Laptops oder PDAs integrieren lassen.

Ansprechpartner:
Dr. Andreas Bräuer
Telefon: 0 36 41 / 8 07-4 04
Fax: 0 36 41 / 8 07-6 03
andreas.braeuer@iof.fraunhofer.de
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF
Albert-Einstein-Straße 7
07745 Jena

Beate Koch | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.iof.fraunhofer.de

Weitere Berichte zu: Beamer Diodenlaser IOF Miniaturisierung

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie