Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrowellensender im IPP-Teilinstitut Greifswald testet ITER-Bauteil

19.07.2004


Der neue, leistungsstarke Mikrowellensender im Teilinstitut Greifswald des Max-Planck-Instituts für Plasmaphysik (IPP) wurde genutzt, um einen Hohlleiter zur Einkopplung von Mikrowellen in das Plasma des geplanten internationalen Testreaktors ITER zu testen. Wissenschaftler aus mehreren europäischen Fusionslaboratorien waren an dem Prüfprogramm beteiligt. Der Sender ist für die Plasmaheizung im Fusionsexperiment Wendelstein 7-X bestimmt, das zur Zeit in Greifswald aufgebaut wird.


Blick in den Wellenleiter: Die Computersimulation macht den Zick-Zack-ähnlichen Durchgang der Mikrowelle durch den Hohlleiter sichtbar. (Bild: B. Plaum, IPF Stuttgart)



Ziel der Fusionsforschung ist es, ein Kraftwerk zu entwickeln, das - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie gewinnt. Um das Fusionsfeuer zu zünden, muss der Brennstoff, ein Wasserstoffplasma, in Magnetfeldern wärmeisolierend eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Nächster großer Schritt ist die internationale Testanlage ITER (lat.: "der Weg"). Mit einer Fusionsleistung von 500 Megawatt - zehnmal mehr, als zur Aufheizung des Plasmas verbraucht wird - soll ITER zeigen, dass Energieerzeugung durch Fusion möglich ist. Die Anlage wurde von Forschern aus Europa, Japan, Russland und den USA vorbereitet, China und Südkorea haben sich dem Projekt angeschlossen.



Die Aufheizung des ITER-Plasmas soll unter anderem ein leistungsstarkes Mikrowellen-System mit 24 Megawatt Leistung übernehmen. Auch zur Unterdrückung von Instabilitäten im Plasma sind die Mikrowellen geeignet. Dazu müssen die Strahlen gezielt an unterschiedliche Orte im Plasma gelenkt werden können. Diese Aufgabe sollen Wellenleiter erfüllen - rechteckige metallische Rohre, die in das Innere des Plasmagefäßes führen. Richtig gebaut, werden die Wellen zwischen den gegenüberliegenden Wänden dieser Rohre Zick-Zack-ähnlich nach vorne reflektiert. Dabei verlassen sie das Rohr unter dem gleichen Winkel, mit dem sie eingestrahlt wurden. In sicherer Entfernung vom heißen Plasma kann so mit beweglichen Spiegeln der Eintrittswinkel eingestellt und der Strahl "ferngesteuert" um rund 10 Grad im Plasma geschwenkt werden.

An der Überprüfung dieses neuartigen Konzepts wird in Japan und Europa gearbeitet. Die Koordinationsstelle für die europäischen ITER-Beiträge, das European Fusion Development Agreement (EFDA), hat hierzu ein ausgefeiltes Testprogramm in Auftrag gegeben. Erster Schritt: Im Institut für Plasmaforschung (IPF) der Universität Stuttgart wurde ein vereinfachtes Modell des Hohlleiters berechnet und gebaut. Das rund 7 Meter lange Teststück aus Aluminium besitzt einen quadratischen Innenquerschnitt von 6 mal 6 Zentimetern und eine kompliziert geriffelte innere Oberfläche. Die IPF-Wissenschaftler sind bereits maßgeblich an der Entwicklung des Mikrowellen-Übertragungssystems für die Plasmaheizung des Fusionsexperiments Wendelstein 7-X beteiligt, das gegenwärtig in Greifswald aufgebaut wird. Zweiter Schritt: die Hochleistungs-Experimente in Greifswald. Als Teil des geplanten 10 Megawatt-Mikrowellensystems zur Heizung des Wendelstein-Plasmas steht hier seit letzten November das erste von insgesamt 10 Gyrotrons zur Verfügung. Im Auftrag des IPP wurde es vom Forschungszentrum Karlsruhe gemeinsam mit weiteren europäischen Forschungsinstituten und Industrieunternehmen entwickelt. Die Mikrowellen-Frequenz von 140 Gigahertz liegt sehr nahe an der ITER-Frequenz von 170 Gigahertz. Mit 1000 Kilowatt Leistung ist es der leistungsstärkste kontinuierlich laufende Mikrowellensender weltweit.

Die verfügbare Leistung ist insbesondere ausreichend, um prüfen zu können, ob das ITER-Teststück unter Hochleistungsbedingungen korrekt arbeitet. Auch Übertragungsverluste und Strahlqualität wollte man in dem für ITER relevanten Betriebsbereich ausmessen. Dazu brachten die Wissenschaftler einen 500 Kilowatt-Mikrowellenstrahl mit Spezialspiegeln in ITER-ähnliche Form und lenkten ihn in den Hohlleiter. Beim Durchgang der Welle durch den Hohlleiter erwärmen sich die Reflexionsstellen. Der Weg der Welle durch den Leiter kann so von außen mit einer Infrarotkamera gemessen und mit den Modellrechnungen verglichen werden.

Die Experimente liefen in Zusammenarbeit mit Kollegen aus den Niederlanden und Italien, die einen Absorber für die Mikrowellen bzw. die zugehörige Leitungsmesstechnik beisteuerten. Ergebnis: Das Testobjekt erwies sich als über Erwarten belastbar; alle berechneten Eigenschaften konnten bestätigt werden. Nach diesem erfolgreichen Funktionstest kann nun der dritte Prüfschritt eingeleitet werden: In den Niederlanden ist der Bau eines originalgetreuen Prototyps geplant - wassergekühlt und vakuumtauglich, in Original-Abmessung und -Material.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: Hohlleiter ITER Mikrowelle Mikrowellensender Welle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht ISFH-CalTeC ist anerkanntes Kalibrierlabor für die Bestätigung von Solarzellen-Weltrekorden
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht Natrium-Leerstellen verbessern Batterieeigenschaften
15.01.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften