Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Projekt zur Optimierung der Lebensdauer von Brennstoffzellen

05.06.2008
"Mein Motor braucht nur Luft und Wasserstoff." Mit dieser Aufschrift könnten sich bald viele Fahrzeuge schmücken, aus deren Auspuff weder schädliche Gase noch Rußpartikel kommen, denn Energie aus wasserstoffgespeisten Brennstoffzellen zu gewinnen, ist keine weltfremde Träumerei.

Mehrere solcher neuartigen Automotoren stehen kurz vor der Marktreife. Sorge bereitet den Entwicklern derzeit vor allem das "Abfallprodukt" Wasser. Mittels Experimenten und Computersimulationen wird in einem europaweiten Projekt untersucht, wie verhindert werden kann, dass flüssiges Wasser dünne Materialschichten in Brennstoffzellen beschädigt und so ihre Lebensdauer verkürzt. An der Universität Erlangen-Nürnberg beteiligen sich zwei Lehrstühle und das Regionale Rechenzentrum Erlangen (RRZE) an den Forschungen, für die ein Budget von insgesamt 5,6 Millionen Euro bereitgestellt ist.

Mit einer Fördersumme von 3,7 Millionen unterstützt die Europäische Union das Großprojekt mit der Abkürzung DECODE. Für die Erlanger Projekte sind 560.000 Euro vorgesehen, von denen die EU drei Viertel trägt. Der Lehrstuhl für Informatik 10 von Prof. Dr. Ulrich Rüde, der Lehrstuhl für Theoretische Physik I von Prof. Dr. Klaus Mecke und das RRZE kooperieren in diesem Projekt mit der Chalmers University in Göteborg, dem Deutschen Zentrum für Luft- und Raumfahrt e. V. sowie drei weiteren Forschungsinstituten und fünf Industriepartnern aus Deutschland, Schweden, Frankreich, Italien und den Niederlanden. Im Frühjahr 2011 sollen die Forschungen abgeschlossen sein.

Umleitung für Elektronen
Brennstoffzellen, die ursprünglich in den Apollo- und Space-Shuttle-Programmen für die Raumfahrt entwickelt wurden, wandeln mit einem hohen Wirkungsgrad chemische in elektrische Energie um. Inzwischen existieren unterschiedliche Arten, die auf verschiedenen Reaktionen basieren. Die bekannteste ist die Proton-Exchange-Membrane(PEM)-Brennstoffzelle, die mit Wasserstoff und Sauerstoff arbeitet.
... mehr zu:
»Brennstoffzelle »DECODE

Eine PEM-Brennstoffzelle besteht aus mehreren Schichten. An zentrale Stelle steht eine Membran, die lediglich für Protonen und ihre positive Ladung "durchlässig" ist, jedoch nicht für Elektronen. Auf jeder Seite der Membran liegt eine Elektrode. Eine Metallplatte mit eingearbeiteten Kanälen leitet das Gas dorthin. Wenn nun Wasserstoff auf der Anoden-Seite einströmt, können nur die Protonen des Gases die Membran passieren, die Elektronen jedoch werden aufgehalten. Sie müssen den Umweg über die Elektroden nehmen, passieren eine zwischengeschaltete Verbrauchsstation - beispielsweise einen Elektromotor -und geben dabei Energie ab. Auf der anderen Seite, der Kathode, kombinieren sie mit dem Sauerstoff der einströmenden Luft und den diffundierten Protonen zu Wasser. Da Wasserstoff leicht zu gewinnen ist und Wasser als einziges Endprodukt entsteht, sind Brennstoffzellen umweltfreundliche Energieerzeuger.

Notwendige Feuchtigkeit und überflüssiges Wasser
Das Projekt DECODE (engl. Akronym für "Untersuchung von Degenerationsmechanismen zur Verbesserung von Komponenten und Design von PE-Brennstoffzellen") befasst sich mit Polymer-Elektrolyt(PE)-Brennstoffzellen. Deren Betriebs­temperatur liegt im Bereich um die 60-80°C, womit sie in die Kategorie der Niedrigtemperaturbrennstoffzellen fallen. Außer in vielerlei anderen Einsatzgebieten sind sie deshalb auch für die Automobilindustrie interessant. Viele der wichtigsten Hindernisse wurden mittlerweile von Automobil-Firmen wie Opel, Volvo und Mercedes überwunden: der Kaltstart zu Beginn der Fahrt, wenn die Brennstoffzelle noch nicht auf Arbeits­temperatur ist; eine höhere Leistung durch Aneinanderreihen mehrerer Zellen und die Wasserstoffaufbewahrung in speziellen Hochdrucktanks. Die Lebensdauer bleibt aber bisher ein Problembereich.

Die Effizienz und elektrische Leistung der Brennstoffzelle hängt stark davon ab, ob die chemischen Reaktionen ungehindert und optimal ablaufen können. Dafür sorgen Katalysatorschichten und Beschichtungen des porösen Materials der Elektrode. Eine gewisse Feuchtigkeit muss zwar in der Kathode vorherrschen, doch flüssiges Wasser kann die Beschichtungen über eine Vielzahl von mechanischen und chemischen Prozessen abtragen und zerstören. Auf lange Frist beeinträchtigt das die Leistungsfähigkeit der Brennstoffzelle. Im Projekt DECODE soll das Verhalten des Wassers und seine Auswirkung auf die Lebensdauer der Materialien bestimmt werden.

Aufgabe der beiden Lehrstühle der Universität Erlangen-Nürnberg im Projekt ist es, das Verhalten des Wassers in der porösen Gasdiffusionsschicht der Elektrode auf dem Computer zu simulieren und die Reaktion auf gealterte Materialien zu untersuchen. Dabei werden zwei verschiedene Verfahren angewandt: Die Informatik simuliert mittels der Lattice-Boltzmann-Methode die grobporigere Schicht mit Poren im Mikrometerbereich (ein millionstel Meter); die Theoretische Physik wendet Methoden der Molekulardynamik in der feinporigeren Schicht an, deren Poren im 100-Nanometer-Bereich (100 milliardstel Meter) liegen.

Supercomputer bis zur Grenze gefordert
Für diese Simulationen fallen riesige Datenmengen im 10-Terabyte-Bereich an (ein Terabyte sind ca 1.000 Gigabyte), die gleichzeitig im Speicher des Computers gehalten werden müssen. Solch immens große Simulationen sind nur mit modernsten Supercomputern möglich, wie etwa dem leistungsfähigsten deutschen Rechner HLRB2 am Leibniz-Rechenzentrum in Garching. Er kann 62 Billionen Rechenoperationen pro Sekunde ausführen und hat 39 Terabyte Hauptspeicher, das ist ungefähr 20.000 Mal so viel wie ein handelsüblicher PC. Der Rechner, der mit diesen Leistungen auf Platz 15 der 500 schnellsten Computer weltweit liegt, ist gerade ausreichend für diese Simulationen.

Mit den Ergebnissen der Simulationen sollen die Industriepartner Methoden entwickeln kön-nen, die Eigenschaften und damit die Lebensdauer der Materialien zu verbessern. Die EU fördert DECODE innerhalb des Sektors "Energie" im Rahmen-Förderungsprogramm FP7. Diesem Sektor wurde ein Gesamt-Budget von 2,3 Milliarden Euro zur Verfügung gestellt. Damit sollen wissenschaftliche Grundlagen dafür geschaffen werden, Energiekosten einzusparen und den Klimawandel abzuschwächen.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de/

Weitere Berichte zu: Brennstoffzelle DECODE

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Linearpotentiometer LRW2/3 - Höchste Präzision bei vielen Messpunkten
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht Neues 100 kW-Wechselrichtermodul für B6-Standard halbiert Gewicht und Volumen
17.05.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie